При намагничивании внешним магнитным полем происходит поворот векторов магнитных моментов доменов в направлении поля и смещение границ доменов. С увеличением напряженности поля этот процесс замедляется (явление насыщения).
Способность материала к намагничиванию характеризуется абсолютной магнитной проницаемостьюm = В/Н . (7.1)
На рис. 7.2 показана основная кривая намагничивания B=(H) и зависимость абсолютной магнитной проницаемости от напряженности внешнего магнитного поля. При определенной величине напряженности m достигает максимума. Точка а, характеризующая этот режим, соответствует касательной Оа, проведенной к основной кривой намагничивания из начала координат. Проницаемость, определенную в очень слабых полях, называют начальной (mн).
Одновременному намагничиванию ферромагнитных материалов постоянным и переменным полем малой амплитуды Нт соответствует частный гистерезисный цикл с вершинами /—2, лежащими на основной кривой намагничивания (см. рис. 7.2). При этом реверсивная (обратимая) проницаемость определяется положением вершинэтого цикла:
где МB, МH – масштабы по осям координат, a – угол наклона к оси абсцисс прямой, соединяющей вершины частного гистерезисного цикла. Аналогично определяется дифференциальная магнитная проницаемость:
(7.2)где b – угол наклона касательной к основной кривой намагничивания в искомой точке.
Для всех упомянутых проницаемостей чаще всего определяется их относительные значения
(7.3)где mо = 4p×10-7 Гн/м – магнитная постоянная.
Материалы с узкой петлей гистерезиса (Hc£ 1 кА/м) называют магнитомягкими, материалы с широкой петлей – магнитотвердыми.
При перемагничивании ферромагнитных материалов в них возникают потери на гистерезис и вихревые токи. При постоянной амплитуде индукции (Bm= const) потери на гистерезис пропорциональны частоте, а потери на вихревые токи – квадрату частоты:
Измерив в этих условиях суммарные магнитные потери Pм1 и Рм2 при двух различных частотах, можно определить постоянные (7.4)Для выполнения условия Вm= сопst необходимо действующее значение напряжения намагничивающей катушки изменять пропорционально частоте (U1/f = const).
Суммарные магнитные потери могут быть определены по площади
динамической вебер-амперной диаграммы y(i): (7.5)где Mi, My – масштабы, принятые по осям координат.
Параллельная ориентация спинов в магнитных доменах имеет место только ниже определенной для данного ферромагнетика температуры – точки Кюри. При превышении этой температуры спонтанная намагниченность исчезает, и магнитная проницаемость резко падает.
2. Описание экспериментальной установки
Схема питается от задающего генератора. Исследуемый ферромагнетик представляет собой тороидальный магнитопровод с двумя обмотками. Последовательно с намагничивающей обмоткой w1 включено небольшое сопротивление R1, напряжение на котором, пропорциональное току i1, подается на горизонтальные пластины осциллографа и на вольтметр V1. На зажимы измерительной обмотки w2 включена интегрирующая цепочка с большим сопротивлением R2 и большой емкостью С. В схеме выбрано
поэтому (7.6)где S – сечение сердечника, kо – постоянная, y1 – потокосцепление обмотки w1.
Таким образом, на экране осциллографа можно наблюдать вебер-амперную характеристику y1(i). При этом масштабы по осям:
(7.7)где Dx, Dy – размах осциллограммы по горизонтали и вертикали соответственно.
Для измерения напряжений на резисторе R1 и на вторичной обмотке w2 применены цифровые вольтметры с большим входным сопротивлением.
3.1 Определение масштабов осциллографа Mi, Мy и магнитных потерь на частоте f= 50 Гц.
Установить на входе цепи напряжение частотой 50 Гц, при котором на экране осциллографа наблюдается предельный гистерезисный цикл (когда дальнейшее увеличение входного напряжения не вызывает значительного роста индукции). Регулировкой усиления вертикального и горизонтального каналов осциллографа добиться, чтобы диаграмма заняла не менее 2/3 экрана. Занести в табл. 7.1 показания вольтметров V1, V2 и размах осциллограммы по горизонтали и вертикали, зарисовать осциллограмму на кальку. Площадь гистерезисного цикла Syi определяется непосредственным подсчетом числа квадратных миллиметров (по миллиметровой бумаге), укладывающихся внутри петли.
Таблица 7.1
Измерения | Расчет | Примечание | |||||||||
f | U1 | U2 | Dx | Dу | Syi | Мi | My | I | y | Pст | w1 = витков w2 = витков D = мм d = мм h = мм R1 = Ом R2 = кОм |
Гц | В | В | мм | мм | мм2 | мА/мм | Вб/мм | мА | Вб | мВт | |
50 | |||||||||||
400 |
3.2 Определение магнитных потерь на частоте 400 Гц.
Изменить частоту входного напряжения до 400 Гц. Увеличивая напряжение на выходе задающего генератора (примерно в 8 раз), установить размах осциллограммы по вертикальной оси (ym) такой же, как в предыдущем опыте. Произвести измерения и занести результаты в табл. 7.1. Осциллограмму перенести на кальку.
3.3 Снятие основной кривой намагничивания.
Установить частоту входного напряжения 50 Гц. Изменяя величину входного напряжения, определить координаты xm и уm вершин гистерезисных циклов. Результаты занести в табл. 7.2.
Таблица 7.2
Измерения | Расчет | |||||||
xm | ym | Im | ym | Hm | Bm | m | mr | mдr |
мм | мм | мА | Вб | А/м | Тл | Гн/м | – | – |
1. Привести схему исследований, данные приборов и исследуемого образца ферромагнитного материала.
2. Перенести на миллиметровку осциллограммы вебер-амперных характеристик y(i), снятые при частотах 50 Гц и 400 Гц, с обозначением и оцифровкой в соответствии с масштабами осей координат. Определить параметры предельного гистерезисного цикла Bm, Br, Hc и, используя справочные таблицы, сделать вывод о материале исследованного ферромагнетика.