Смекни!
smekni.com

Технология и автоматизация производства РЭА (стр. 11 из 37)

структуры ТП влияют:

- величины конструкторского допуска на первичные конструкционные

материалы, определяющие вероятность выхода годных изделий при той или

иной точности изготовления;

- вид и параметры распределения плотности вероятности показателя

качества изделия, также определяющие вероятность выхода годных изде-

лий;

- технологическая точность (точность изготовления), определяющая

затраты на производство изделия при заданной структуре ТП;

- вид и параметры распределения плотности вероятности показателя

качества.

Проблема минимизации технологической себестоимости годного изде-

лия должна рассматриваться как комплексная, ее решение включает в себя

взаимосвязанное рассмотрение системотехнических, схемотехнических,

конструкторских и технологических задач проектирования.

Таким образом, под технологической оптимизацией будем понимать

взаимосвязанный выбор схемотехнической (топологической) реализации из-

делия, номинальных значений его конструкционных параметров и техноло-

гической точности при заданных ограничениях по критерию минимальной

технологической себестоимости годного изделия. Технологическая оптими-

зация ведется на базе результатов параметрического синтеза устройства

и синтеза ТП. (Параметрический синтез характеризуется жесткой страте-

гией получения единственного квазиоптимального варианта ТС, где выяв-

ляются связи параметров системы с критериями качества, т.е. величина-

ми, однозначно связанными с качеством системы, которые образуют опти-

мизационную модель).

Объектом технологической оптимизации являются схемотехнические и

топологические решения устройства, при синтезе которых оптимально

удовлетворены требования обеспечения заданных эксплуатационных пара-

метров, найдены допустимые отклонения электрических и конструкционных

параметров от их номинальных значений и ТП их изготовления. При техно-

логической оптимизации необходимы:

- оценка вероятности выхода годных изделий, учитывающая, что оп-


- 31 -

тимизируется единая система с взаимно влияющими параметрами (условной

вероятностью);

- поиск такого сочетания конструкционных параметров, чтобы веро-

ятность выхода годных была максимальна.

Если решена первая задача, то на основе этого для решения второй

можно использовать стандартные методы оптимизации.

Основой алгоритма в этом случае является циклическое определение

соответствия всех электрических параметров полям допусков при случай-

ных выборах значений конструкционных параметров. Массив значений

конструкционных параметров формируется также, как в методе статисти-

ческих испытаний с использованием датчика случайных чисел при учете

корреляции между параметрами. Законы распределения конструкционных па-

раметров принимаются гауссовскими.

Для каждой реализации массива значений конструкционных параметров

последовательно рассчитываются значения электрических параметров и

сравниваются с допустимыми отклонениями. При несоответствии значения

параметра полю допуска расчет для данной реализации прекращается и

формируется следующая реализация. Та, при которой удовлетворены огра-

ничения на все электрические параметры, регистрируется, после чего

цикл повторяется для следующей реализации. Соотношение общего числа

реализаций и реализаций, удовлетворяющих всем наложенным ограничениям,

рассматривается как условная вероятность выхода годных.

При изменяемом ТП минимум технологической себестоимости годного

изделия достигается взаимосвязанным выбором номинальных значений его

конструкционных параметров, технологической точности и структуры ТП.

Выделим 3 наиболее общих случая:

1. Устойчивый и стабильный ТП целенаправленно изменяется по точ-

ности без изменения структуры за счет изменения точности операций;

2. ТП целенаправленно изменяется по структуре и точности, остава-

ясь устойчивым и стабильным;

3. ТП неустойчив за счет наличия систематических погрешностей и

подлежит периодической корректировке.

Для отыскания условий оптимума во всех трех случаях приемлемы

стандартные методы оптимизации. Для первых двух случаев задача оптими-

зации формулируется одинаково: Пусть Y - вектор номинальных значений

управляемых эксплуатационных параметров, s - вектор их средне-квадра-

тичных отклонений. Минимизируемой (целевой) функцией является техноло-

гическая себестоимость годного изделия, критерием оптимальности - ее

условный минимум minC 4t 0(Y,s) при выполнении ограничений: YcYP, YcYD;

scsP, где: YP - область работоспособности, YD - допустимая область, sP

- область реализуемых среднеквадратичных отклонений.

Для случая 3 в целевую функцию включается T 4k 0 - время до корректи-

ровки ТП, т.о. целевая функция имеет вид C 4t 0(Y,s,T 4k 0) при неизменном

критерии оптимальности - условном минимуме целевой функции в случае

выполнения помимо трех указанных и четвертого ограничения T 4тп 0>T 4k 0>0

(T 4тп 0 - время, в течение которого функционирует ТП). Выбор точности ТП

без изменения его структуры связан с выбором технологического оборудо-

вания по показателя точности, выбором точности поддержания режимов

технологических операций и методов обеспечения этой точности. В ре-

зультате точность ТП связана с величиной технологической себестоимости

и определяет вероятность выхода годных изделий. Таким образом целевая

функция имеет вид: C 4t 0=C 4t 0(s)/P 4y 0(Y,s) 76 0min (6), где: C 4t 0(s) - себестои-

мость изготовления партии изделий, P 4y 0(Y,s) - вероятность выхода годных

изделий.

В общем случае в процессе технологической оптимизации варьируется

точность выполнения отдельных операций в зависимости от выбора техно-

логического оборудования и методов обеспечения этой точности.

Все перечисленные выше изменения должны быть взаимосвязаны, т.е.


- 32 -

решение задачи в рамках автономных систем автоматизированного проекти-

рования конструкций (САПРК) и систем автоматизированного проектирова-

ния технологических процессов (САПРТП) не представляется возможным.

1.10. Основные принципы автоматизации производства.

В своем развитии автоматизация производства прошла несколько ста-

дий, которые сменяли друг друга. В то же время, они могут применяться

одновременно и применяются сейчас на различных предприятиях и типах

производств. Рассмотрим их последовательно.

1.10.1. Понятие системы автоматического регулирования (САР)

САР являются первым уровнем (иногда единственным) большинства

систем автоматического и автоматизированного управления. Часто их еще

называют системами локального регулирования. Основное их назначение -

это поддержание параметров технологического процесса в заданных преде-

лах или изменение их по заданному закону. Они широко применяются в тех

случаях, когда существует один управляющий параметр и один контролиру-

емый параметр, на который он влияет. Например, в лабораторной печи

контролируется температура и нагрев осуществляется с помощью электри-

ческой спирали. Регулировать температуру можно за счет изменения тока

или напряжения на спирали.

Обычно САР применяются там, где регулирование ведется в достаточ-

но узких пределах, при выходе системы за эти пределы САР отключают и

переходят на ручное управление или управление от АСУТП.

Иногда в одной системе используется несколько САР для управления

системой по нескольким каналам вход-выход.

1.10.2. Понятие информационно-измерительной системы (ИИС)

ИИС, или как их еще называют системы централизованного контроля

(СЦК), исторически появились первыми и широко применяются до сих пор в

тех производствах, где технологические процессы высокостабильны,

устойчивы к внешним воздействиям, а управляющие воздействия сложно

формализуемы. Например, ИИС широко применяются в энергетике.

Как следует из названия, основной задачей ИИС является централи-

зованный сбор информации о ходе технологического процесса (опрос дат-

чиков), обработка ее и выдача в виде удобном для дальнейшего использо-

вания.

1.10.3. Понятие автоматизированной системы управления

технологическим процессом (АСУТП)

АСУТП предназначена для автоматического сбора информации о ходе

технологического процесса, обработки ее, выработки управляющих воз-

действий для его корректировки и диалога с оператором-технологом в

случае значительных нарушений технологических режимов, подготовки от-

четных документов. Составной частью АСУТП является ИИС.

В настоящее время АСУТП широко применяются в промышленности, осо-

бенно там, где выполняются сложные технологические процессы с большим

количеством контролируемых параметров и управляющих воздействий, с

целью разгрузки оператора от рутинной работы и сосредоточения его вни-

мания на тех случаях, когда требуется его вмешательство.

Автоматизированные системы управления технологическими процессами

отличаются от систем автоматического управления (регулирования) более

широким диапазоном автоматизируемых функций управления. АСУТП выполня-

ют следующие основные функции: централизованного контроля, определяют


- 33 -

оптимальный технологический режим, удовлетворяющий выбранному крите-

рию; формируют и реализуют управляющие воздействия, обеспечивающие ве-

дение оптимального режима; корректируют математическую модель объекта

при изменениях на объекте; рассчитывают и регистрируют текущие и обоб-

щенные технологические и экономические показатели; оперативно распре-

деляют материальные потоки и энергию между технологическими агрегатами