Смекни!
smekni.com

Технология и автоматизация производства РЭА (стр. 15 из 37)

│ │ │ │ │ │ │ └──┬──┘ │гал│

┌──┴──┐ ┌──┴──┐ ┌──┴──┐ ┌───┴─┐ ┌──┴──┐ ┌──┴─┐ ┌──┴──┐ │ │тер│

│ ИИС │ │ ИИС │ │склад│ │склад│ │склад│ │ ОГК│ │ ОГТ │ ┌──┴──┐ └─┬─┘

└──┬──┘ └──┬──┘ └─────┘ └─────┘ │инст-│ └────┘ └─────┘ │ ОК │ │

│ │ │румен│ └─────┘ ┌───┴──┐

┌──┴──┐ ┌──┴──┐ │та и │ │бухгал│

│тех. │ │тех. │ │обору│ │терия │

│проц.│ │проц.│ │дова-│ └──────┘

└─────┘ └─────┘ │ния │

└─────┘

Рис. 6. Иерархическая структура АСУП.

──────────────────────────────────────────────────────────────────────

1.11. Перспективы применения средств вычислительной

техники в технологии производства РЭА.

Ниже приведены применяемые средства и способы гибкой автоматиза-

ции производства и основные достигаемые результаты их применения.

1. Многоцелевое технологическое оборудование с микропроцессорным

управлением. Повышается концентрация операций, увеличивается время

непрерывной работы, повышается производительность работ, качество и

идентичность изделий, сокращается потребность в рабочей силе, произ-

водственных площадях и оборудовании, сокращается продолжительность

производственного цикла изготовления РЭА, увеличиваются системная гиб-

кость, надежность и живучесть ГПС.

2. Микропроцессорные локальные системы управления (ЛСУ) техноло-

гическим и другими видами оборудования. Обеспечивается многофункцио-

нальный характер управляемых от ЛСУ станков, увеличивается производи-

тельность оборудования, повышается качество выпускаемых изделий, сни-

жается объем аппаратурной части, благодаря чему повышается надежность

системы и оборудования, возрастает уровень унификации (как конструк-

тивной, так и функциональной); снижается стоимость ЛСУ и оборудования,

упрощается сопряжение с ЭВМ группового управления.

3. Промышленные роботы (ПР). Автоматизация операций загрузки-выг-

рузки оборудования, инвариантность к этим операциям, автоматизация не-

которых транспортных операций, при этом исключается ручной труд, сок-

ращается длительность операций загрузки-выгрузки, транспортирования,

повышается автономность работы оборудования и системная живучесть;

увеличивается коэффициент загрузки оборудования, снижается потребность

в рабочей силе.

4. Комплексы оборудования ГПК, ГПС (с управлением от ЭВМ), РТК,


- 41 -

АТСС, СЦК. Автоматизация не только основных, но и вспомогательных опе-

раций (транспортные, складские, контрольно-измерительные работы); иск-

лючается (сокращается) потребность в рабочей силе: сокращается весь

производственный цикл выпуска изделий; СЦК повышает достоверность

контроля и способствует этим повышению качества изделий, диагностика

оборудования позволяет повысить надежность оборудования и комплексов.

5. ЭВМ для управления комплексом. Оперативное управление группой

оборудования с одновременным повышением коэффициента его загрузки;

обеспечивается учет и оптимизация распределения ресурсов, повышается

производительность, сокращается объем страховых заделов и объемов не-

завершенного производства; исключаются многие дополнительные операции,

которые вводились из-за учета длительного хранения полуфабрикатов на

складе (например, дополнительное лужение выводов); повышается надеж-

ность, гибкость, упрощается согласование с ЭВМ цехового уровня.

6. Высокий уровень унификации, стандартизации всех средств авто-

матизации производства (включая ТП, оборудование, ПР, оснастку, инс-

трумент, программное обеспечение). Сокращаются сроки и трудоемкость

проектирования, изготовления и отладки указанных средств, снижается

себестоимость, повышается надежность.

7. Системы автоматизированного проектирования (САПР) и системы

научных исследований (АСНИ) на базе больших ЭВМ. Автоматизация процес-

са проектирования изделий РЭА с проведением предварительных исследова-

ний способствует повышению качества РЭА, сокращает трудоемкость и сро-

ки проектирования.

8. Автоматизированная система технологической подготовки произ-

водства (АСТПП) на базе больших ЭВМ. Автоматизация разработки ТП, уп-

равляющих программ на все виды оборудования и все изделия планируемого

периода и хранение их в памяти ЭВМ, автоматизация проектирования тех-

нологического оснащения, сокращается трудоемкость и сроки технологи-

ческой подготовки производства.

9. Автоматизированные системы управления производством на базе

больших ЭВМ. Автоматизация процессов планирования, материального обес-

печения производства, оперативного управления процессом изготовления

изделий РЭА.

10. Комплексные интегрированные системы единой цепи проектирова-

ние-изготовление (ИПК). Объединение всех процессов, связанных с проек-

тированием, подготовкой производства и изготовления изделий в единую

непрерывную цепь; успешная адаптация конструкции изделия к условиям

производства, повышается эффективность выпуска изделий, значительно

сокращается объем преобразований информации об изделии, выполняемом

при раздельном использовании САПР, АСТПП, АСУП, АСУГПС, что дает воз-

можность осуществить принцип "один раз ввести и многократно использо-

вать информацию", т.е. исключить устройства ввода, преобразования

АСУТПП, АСП, АСУГПС и оставить их только, например, в САПР; значитель-

но сокращается цикл проектирование-изготовление; повышается качество

изделий; снижается себестоимость; экономятся материальные ресурсы.

1.12. Применение роботов на вспомогательных и транспортных

производственных операциях. Конструктивные элементы и

характеристики роботов-манипуляторов.

В настоящее время роботы в основном применяются при операциях

транспортирования, сборки, обслуживания обрабатывающего оборудования,

сварки и контроля. С точки зрения вычислительной нагрузки на управляю-

щую ЭВМ производственные операции можно подразделить на два вида:

- информационно простые операции, к ним относятся операции пере-

носа большого числа предметов или тяжелых предметов;

- информационно сложные операции (сборки и контроля).


- 42 -

Основным направлением совершенствования роботов является развитие

применения микро-ЭВМ с 8, 16 и 32-разрядными микропроцессорами, разви-

тыми операционными системами и задачеориентированными языками програм-

мирования высокого уровня. Перспективным направлением является исполь-

зование аналоговых микропроцессоров, т.е. больших интегральных схем,

где в одном кристалле реализованы как цифровые элементы - микропроцес-

сор, так и цифро-аналоговые и аналого-цифровые преобразователи, схемы

управления периферийными устройствами.

Для реализации высоконадежных систем управления роботами все

больше находят применение адаптивные микропроцессоры с БИС, т.к. в

этих устройствах имеются резервные узлы, средства диагностики отказов

и самовосстановления, реализующие адаптивные внутренние связи,

способствующие увеличению надежности роботоориентированных вычисли-

тельных устройств до показателей, отвечающих производственным требова-

ниям.

Приведем основные термины и определения, данные в ГОСТ 25686 и

26228 " Манипуляторы, автооператоры и промышленные роботы. Системы

производственные гибкие. Термины и определения."

Манипулятор - управляемые устройство или машина для выполнения

двигательных функций, аналогичных функциям руки человека при перемеще-

нии объектов в пространстве, оснащенное рабочим органом.

Манипулятор с ручным управлением - манипулятор, управление кото-

рым осуществляет оператор.

Сбалансированный манипулятор - манипулятор с ручным управлением,

содержащий систему уравновешивания устройства рабочего органа.

Автооператор - автоматическая машина, состоящая из исполнительно-

го устройства в виде манипулятора или совокупности манипулятора и уст-

ройства передвижения и неперепрограммируемого устройства управления.

Промышленный робот - автоматическая машина, стационарная или пе-

редвижная, состоящая из исполнительного устройства в виде манипулято-

ра, имеющего несколько степеней подвижности, и перепрограммируемого

устройства программного управления для выполнения в производственном

процессе двигательных и управляющих функций.

Промышленные роботы бывают с цикловым программным управлением и

числовым программным управлением (робот, управляемый устройством ЧПУ с

позиционным и (или) контурным программным управлением).

Адаптивно-промышленный робот - промышленный робот, управляемый

устройством адаптивного управления.

Агрегатный промышленный робот - промышленный робот, в котором по

крайней мере исполнительное устройство изготовлено путем агрегирования

из деталей, узлов и агрегатов, входящих в унифицированный набор для

построения определенных модификаций промышленных роботов.