Смекни!
smekni.com

Технология и автоматизация производства РЭА (стр. 26 из 37)

работоспособным и можно проводить ремонт отказавших элементов во время

выполнения задачи. Один и тот же объект может быть отнесен к разным

группам в зависимости от режима его применения.

Для первой группы объектов в процессе эксплуатации чередуются

случайные периоды времени безотказной работы и времени восстановления

(ремонта). Тогда случайное время между очередными восстановлениями T 4oi

равно T 4oi 0=T 4pi 0+T 4вi 0 (69). Если случайные величины Т 4pi 0 и Т 4вi 0 независимы,

то плотность распределения их суммы Т 4оi 0 по известному из теории веро-

ятностей правилу о композиции распределений равна:


- 69 -

4t

f 4o 0(t)= 73 0f(x)g(t-x)dx (70)

где: f(t)- плотность распределения времени безотказной работы;

g(t)- плотность распределения времени восстановления объекта.

Для объектов второй группы могут в качестве показателей надежнос-

ти использоваться также параметр потока отказов, средняя наработка на

отказ и другие характеристики.

Все рассмотренные показатели надежности объектов можно разделить

на три группы:

1. интервальные, относящиеся к заданному интервалу наработки или

времени (t 41 0,t 42 0);

2. мгновенные, соответствующие заданному значению времени или на-

работки t;

3. числовые, не связанные с расположением заданного интервала или

момента времени (наработки).

2.9.4. Оценка показателей надежности объектов по

экспериментальным данным.

Экспериментальные данные о надежности технических объектов могут

быть получены в результате наблюдений за их работой либо в условиях

реальной эксплуатации, либо при специальных испытаниях на безотказную

работу. Данные испытаний обычно не могут полностью заменить эксплуата-

ционные данные. Реальная же эксплуатация представляет собой недостижи-

мый по своим масштабам в лабораторных условиях эксперимент. Однако и

при реальной эксплуатации далеко не всегда удается получить нужную ин-

формацию:

1. Данные реальной эксплуатации часто соответствуют морально ста-

реющим устройствам. Конструкция и технология изготовления современных

технических объектов меняются столь быстро, что нередки случаи, когда

данные об эксплуатации объектов, выпущенных несколько лет назад, имеют

лишь историческое значение. Вместе с тем основной целью любых исследо-

ваний в области надежности является повышение надежности будущих объ-

ектов.

2. Данные реальной эксплуатации обычно являются неполными. Это

объясняется рядом причин: организационными трудностями сбора и обра-

ботки сведений, трудоемкостью применения переносной контрольно-измери-

тельной аппаратуры, недостаточной чувствительностью и точностью этой

аппаратуры и не всегда достаточной квалификацией работников. Из-за ог-

раниченности объема статистических данных во многих случаях трудно по-

лучить достоверные характеристики надежности для различных условий

применения объектов.

3. Иногда трудно осуществлять наблюдение за работой некоторых

объектов при их реальной эксплуатации.

Перечисленные причины определяют необходимость широкого примене-

ния испытаний изделий на безотказную работу и моделирования процесса

эксплуатации. Испытания на безотказную работу почти всегда связаны с

физическим моделированием условий эксплуатации. При проведении этих

испытаний обычно удается преодолеть большинство перечисленных труднос-

тей. Однако эксперимент продолжается очень долго, обычное время нара-

ботки на отказ исчисляется десятками тысяч часов. Для проведения экс-

перимента необходимо значительное количество специального оборудова-

ния. Как правило, подобный эксперимент стоит очень дорого; часто при

испытаниях приходится расходовать значительное количество специального

оборудования. Испытаниям подвергаются лишь серийно выпускаемые изде-

лия, тогда как часто желательно иметь хотя бы некоторую информацию о

проектируемых изделиях. Поэтому нельзя ограничиться лишь испытаниями


- 70 -

на безотказную работу. Возникает вопрос о применении и всемерном раз-

витии моделирования процесса эксплуатации изделий и разработке методов

ускоренных испытаний.

Этот путь лабораторных исследований дает возможность проводить

эксперимент в течение очень короткого времени, многократно повторять и

видоизменять его. Кроме того, можно в какой-то степени исследовать по-

ведение будущих, проектируемых объектов.

Испытания на безотказную работу бывают определительными или конт-

рольными. При определительных испытаниях находят действительные значе-

ния показателей надежности технических объектов. Контрольные испытания

должны либо подтвердить, что испытуемые объекты обладают надежностью

не ниже требуемой (при этом технические объекты принимаются), либо оп-

ровергнуть это утверждение (при этом объекты бракуются). Иначе говоря,

определительные испытания проводят с целью сбора информации о надеж-

ности объектов, контрольные испытания - для обоснования решения о ка-

честве продукции.

Испытаниям на безотказную работу обычно подвергается сравнительно

небольшое число экземпляров объектов. Поэтому существует проблема ста-

тистической оценки свойств объектов по результатам испытаний ограни-

ченного числа экземпляров. Имеются два варианта постановки этой зада-

чи, обычно связанные с различным назначением испытаний:

1. Может быть поставлен вопрос, соответствуют ли значения показа-

телей надежности заданным требованиям. Этот вопрос обычно возникает

при контрольных и приемо-сдаточных испытаниях. При такой постановке

задачи решение обычно ищется путем проверки статистических гипотез.

2. Можно ставить вопрос об определении численных значений показа-

телей надежности испытуемых объектов. Такие вопросы возникают при ис-

пытаниях блоков, узлов, макетов аппаратуры в ходе ее конструирования и

применения. В данном случае обычно применяются методы оценки парамет-

ров распределения наработки на отказ.

Общие методы решения подобных задач в математической статистике

разрабатываются уже давно. Применение этих методов для оценки резуль-

татов испытаний на безотказную работу обычно не вызывает принципиаль-

ных затруднений.

Испытания на безотказную работу различаются по значению и харак-

теру внешних воздействий на испытываемые изделия.

До проведения определительных и контрольных испытаний проводится

аппроксимация имеющихся экспериментальных данных каким-либо теорети-

ческим распределением и проверка статистической гипотезы о том, что

принятое теоретическое распределение не противоречит экспериментально-

му.

Для проведения испытаний составляется план, в котором указывают-

ся: количество объектов, порядок замены отказавших объектов, продолжи-

тельность испытаний.

Результаты испытаний обычно представляют в виде упорядоченной

последовательности (вариационного ряда) чисел, которые являются значе-

ниями наработки до отказа объектов.

Графики интенсивности отказов l(t) или плотности распределения на-

работки до отказа f(t) строятся по статистическим данным об отказах.

2.9.5. Параметрическая надежность технических объектов.

Если отказы происходят из-за плавных изменений свойств объектов,

то эти отказы называют параметрическими или постепенными. Надежность в

отношении параметрических отказов часто называют параметрической на-

дежностью. Для оценки надежности объектов по данным о приближении к

отказам необходимо составить модели процессов развития отказов. Могут

быть составлены модели типа нагрузка-прочность и параметр-поле допус-


- 71 -

ка. В обоих случаях объект является работоспособным, пока изменяющаяся

в процессе эксплуатации величина не достигнет границы рабочей области.

Между моделями этих типов имеются лишь методологические различия.

Поскольку цель исследования надежности состоит в нахождении расп-

ределения наработки до отказа, в моделях процессов развития отказов

хотя бы один из факторов должен рассматриваться как случайный процесс.

Особенности случайных процессов старения, изнашивания, разрегулирова-

ния заключаются в том, что они вызывают грубые отказы. Такой отказ яв-

ляется следствием накопления необратимых изменений материалов. Иначе

говоря, возникновение этого отказа является следствием монотонного

случайного процесса изменения какого-то параметра элемента. Отличие от

постепенного отказа состоит в том, что не контролируется изменяющийся

параметр, при достижении которым критического значения (границы) нас-

тупает внезапный отказ элемента, обычно связанный с его механическим

повреждением.

Таким образом, любой отказ объекта связан со случайным процессом

(в общем случае векторным) изменения определяющего параметра и проис-

ходит при достижении этим параметром критических значений.

При эксплуатации или хранении удается лишь 1-2 раза измерить зна-

чения определяющего параметра одинаковых элементов. Поэтому часто ока-

зывается, что можно лишь предполагать по данным ограниченного числа

вертикальных сечений, какой в действительности случайный процесс изме-

нения параметра. Таким образом, обычно в ходе исследования приходится

интерполировать и экстраполировать значения определяющего параметра

элемента. Для этого необходимо иметь гипотезу о характерном виде кри-

вых износа. Естественно предположить, что в основной период работы

скорость изменения параметра каждого элемента примерно постоянна. Для

наугад взятого элемента скорость изнашивания случайна - для каждого

элемента - своя.

По изложенным причинам для описания процессов изнашивания во мно-