Смекни!
smekni.com

Расчет и проектирование диода Ганна (стр. 2 из 7)

1.1.3 Стабилитрон и стабистрон

Стабилитроном называют полупроводниковый диод, напряжение на обратной ветви ВАХ которого в области электрического пробоя слабо зависит от значения проходящего тока.

1.1.4 Ограничители напряжения

Ограничитель напряжения - это полупроводниковый диод, работающий на обратной ветви ВАХ с лавинным пробоем и (или) на прямой ветви характеристики, и предназначен для защиты от перенапряжений электрических цепей интегральных и гибридных схем, радиоэлектронных компонентов и многих других цепей аппаратуры.

Ограничители напряжения могут быть несимметричны и симметричны. Приборы первой группы в основном предназначены для защиты цепей постоянного тока, второй - переменного тока.

1.1.5 Варикапы

Варикап – это полупроводниковый диод, в котором используются зависимость емкости p-n перехода от обратного напряжения.

Варикапы удобны тем, что, подавая на них постоянное напряжение смещения, можно дистанционно и практически безинерционно менять их емкость и тем самым резонансную частоту контура, в который включен варикап. Варикапы применяют для усиления и генерации СВЧ сигналов, перестройки частоты колебательных контуров или автоподстройки частоты.

1.1.6 Излучающие диоды

Излучающим диодом называют полупроводниковый прибор, излучающий кванты света при протекании через него прямого тока.

По характеристике излучения излучающие диоды можно разделить на две группы: с излучением в видимой части спектра (светодиоды) и инфракрасной – диоды ИК-излучения.

1.2 Сверхвысокочастотные диоды

Большинство сверхвысокочастотных (СВЧ) диодов представляют собой точечные диоды, выпрямление в которых происходит на контакте металл - полупроводник. Особенностью таких контактов является возможность выпрямления без инжекции неосновных носителей в кристалл полупроводника. Поэтому в базе диода не происходит накопления и рассасывания носителей, что свойственно плоскостным диодам, ограничивающих их частотный диапазон.

В зависимости от выполняемой функции и применения СВЧ диоды подразделяются на детекторные, смесительные, умножительные, переключательные, ограничительные, параметрические и генераторные.[3]

1.2.1 Детекторные СВЧ – диоды

Полупроводниковые диоды, предназначенные для детектирования сигнала, называют детекторными. В качестве детекторов используют, как правило, плоскостные или точечные диоды с переходом Шоттки.

Детекторные диоды выпускают в различных корпусах: в керамическом патроне, в коаксиальном патроне, в керамическом патроне в форме таблетки.

Рисунок 1.2 –Эквивалентная схема детекторного диода

1.2.2 Смесительные СВЧ-диоды

Смесительным называют полупроводниковый диод, предназначенный для преобразования высокочастотных сигналов в сигнал промежуточной частоты.

Потери преобразования смесительного диода выражают отношением

L прб= PСВЧ / P п.ч (1.1)

где Рсвч - номинальная мощность подводимого СВЧ – сигнала; Р п. ч – номинальная мощность сигнала промежуточной частоты.

Обычно Ⅼпрб выражают в децибелах (дБ).

прб= 10lg P СВЧ / P п. ч (1.2)

Качество смесительного диода в значительной степени определяется свойствами полупроводника, из которого он изготовлен.

Κ=α /μ

εε₀/n (1.3)

α – радиус контакта, μ – подвижность основных носителей заряда; n - концентрация основных носителей заряда.

Чем меньше значение К, тем лучшими свойствами обладает смесительный диод.

1.2.3 Переключательные СВЧ-диоды

Переключательным называют полупроводниковый диод, предназначенный для применения в устройствах управления уровнем сверхвысокочастотной мощности.

Использование полупроводниковых диодов в качестве переключающих устройств позволяет создавать быстродействующие фазовые модуляторы в миллиметровом диапазоне волн. На рис1.3представлены эквивалентные схемы диодов, используемых в качестве переключателей: диода с p-n –переходом или переходом Шоттки (а) и диода с p-i-n-структурой (б).


Рисунок 1.3 –Эквивалентные схемы переключательного диода.


Полная эквивалентная схема переключательного СВЧ- диода помимо сопротивления p-n –перехода содержит емкость корпуса, и индуктивность контактной проволоки (в). В переключательных диодах Lк и Cп являются элементами резонансныхконтуров, образуемых диодом, и, таким образом, их значенияне могут быть произвольными.

Важным параметром выключателей является критическая частота fкр.п. д., характеризующая эффективность переключательного диода и определяемая по формуле :

fкр.п.д, =1/2πCстр√rпр.п.д r обр.п.д (1.4)

где Cстр -емкость структуры.

1.2.4 Туннельные диоды

Туннельным называют полупроводниковый диод на основе вырожденного полупроводника, в котором туннельный эффект приводит к появлению на вольт- амперной характеристике при прямом напряжении участка отрицательной дифференциальной проводимости.

Эквивалентная схема туннельного диода состоит из емкости перехода Cp-n, сопротивления потерь rп - суммарного активного сопротивления кристалла, омических контактов и выводов; дифференциального сопротивления rдиф - величины, обратной крутизне вольт- амперной характеристики; индуктивности диода- полной последовательной индуктивности диода при заданных условиях и емкости корпуса Скор. Емкость между выводами диода Сд= Cp-n + Скор.


Рисунок 1.3- Эквивалентная схема туннельного диода

Частотныесвойства туннельных диодов характеризуются: резонансной частотой f₀- частотой, на которой общее реактивное сопротивление диода обращается в нуль; предельной резистивной частотой fR ,на которой активная составляющая полного сопротивления последовательной цепи, состоящей из p-n –перехода и сопротивления потерь, обращается в нуль:

fR= 1/2π |rдифmin| Cд √rдифmin/ rn-1 (1.5)

1.2.5 Обращенные диоды

Разновидностью туннельных диодов являются обращенные диоды. Обращенным называют полупроводниковый диод на основе полупроводника с критической концентрацией примеси, в котором проводимость при обратном напряжении значительно больше, чем при прямом вследствие туннельного эффекта. Большой обратный ток и нелинейность вблизи нулевой точки позволяют использовать такие туннельные диоды в качестве пассивного элемента радиотехнических устройств, детекторов и смесителей для работы при малом сигнале и как ключевые устройства для импульсных сигналов малой амплитуды.Вольт- амперную характеристику обращенных диодов для напряжения U< Umax можно аппроксимировать формулой

I ≈U / rдиф eβU (1.6)

гдеrдиф – дифференциальное сопротивление диода при U=0; β можно определить экспериментально по наклону кривой зависимости логарифма проводимости от напряжения:

ln l/U (U) = -ln rдиф – βU (1.7)

Эквивалентная схема обращенного диода не отличается от эквивалентной схемы туннельного диода

1.2.6 Лавинно-пролетные диоды

Лавинно-пролетным (ЛПД) называют полупроводниковый диод, работающий в режиме лавинного размножения носителей заряда при обратном смещении электрического перехода и предназначенный для генерации сверхвысокочастотных колебаний.

Лавинно-пролетный диод обладает отрицательным дифференциальным сопротивлением в режиме лавинного пробоя. Недостатком ЛПД является очень низкий к.п.д. Это объясняется тем, что амплитуда колебательного напряжения на диоде намного меньше постоянного напряжения, приложенного к диоду для обеспечения режима лавинного умножения.[2]

1.3 Диод Ганна

В 1963 г. Дж. Ганн ( J.Gunn) установил, что если в монокристаллическом образце из арсенида галлия ( GaAs) или фосфида индия n-типа создать постоянное электрическое поле с напряженностью выше некоторого порогового значения, то в цепи возникают спонтанные колебания силы тока СВЧ- диапазона. Позднее Ганн установил, что при напряженности поля выше пороговой у катода формируется домен сильного электрического поля, который движется к аноду со скоростью примерно равной 105 м/с и исчезает у анода. Когда домен формируется, сила тока в цепи уменьшается, при исчезновении домена сила тока возрастает. Таким образом, в цепи возникают периодические колебания силы тока. В этом же году Б.К. Ридли высказал идею о том, что доменная неустойчивость должна появляться в полупроводниковом образце, если на его вольт- амперной характеристике имеется участок с отрицательной дифференциальной проводимостью N-типа. Такой вид вольт- амперная характеристика будет иметь, если при увеличении напряженности поля скорость носителей либо их концентрация уменьшаются. Б.К. Ридли, Т.Б. Уоткинс и С. Хилсум показали, что в GaAs и InP n-типа скорость электронов должна уменьшаться с ростом напряженности электрического поля, когда она превысит некоторое пороговое значение, достаточное для того, чтобы обусловить междолинный переход электронов из нижней долины, где их подвижность велика, в более высоколежащие долины зоны проводимости, в которых подвижность электронов резко снижается. В 1964 г. Н. Кремер указал, что все основные закономерности эффекта Ганна могут быть объяснены на основе механизма Ридли – Уоткинса – Хилсума.