Следует иметь в виду, что электронный к.п.д. генераторов на диодах Ганна уменьшается на высоких частотах, когда период колебаний становится соизмеримым с временем установления ОДП ( это проявляется уже на частотах ∼30 ГГц).Инерционность процессов, определяющих зависимость средней дрейфовой скорости электронов от поля, приводит к уменьшению противофазной составляющей тока диода. Предельные частоты диодов Ганна, связанные с этим явлением, оцениваются значениями ∼ 100 ГГц для приборов из GaAs и 150-300 ГГц для приборов из InP .
Выходная мощность диодов Ганна ограничена электрическими и тепловыми процессами. Влияние последних приводит к зависимости максимальной мощности от частоты в виде Pвыхf =A ,где постоянная А определяется допустимым перегревом структуры, тепловыми характеристиками материала, электронным к.п.д. и емкостью диода. Ограничения по электрическому режиму связаны с тем, что при большой выходной мощности амплитуда колебаний Um оказывается соизмеримой с постоянным напряжением U0 на диоде: Um≈ U0= E0l.
В доменных режимах имеем Pвыхf2 = 0,5 E20доп v2нас / Rэ. Максимальная напряженность электрического поля в домене Eдом значительно превышает среднее значение поля в диоде E0 ,в то же время она должна быть меньше пробивной напряженности, при которой возникает лавинный пробой материала ( для GaAs Епроб ≈ 200 кВ/см).Обычно допустимым значением электрического поля E0доп считают 15 кВ/см.
Как и для ЛПД, на относительно низких частотах ( в сантиметровом диапазоне длин волн) максимальное значение выходной мощности диодов Ганна определяется тепловыми эффектами. В миллиметровом диапазоне толщина активной области диодов, работающих в доменных режимах, становится малой и преобладают ограничения электрического характера. В непрерывном режиме в трехсантиметровом диапазоне от одного диода можно получить мощность 1-2 Вт при к.п.д. до 14% ; на частотах 60-100 ГГц- до 100 вВт при к.п.д. в единицы процентов. Генераторы на диодах Ганна характеризуются значительно меньшими частотными шумами, чем генераторы на ЛПД.
Режим ОНОЗ отличается значительно более равномерным распределением электрического поля. Кроме того, длина диода, работающего в этом режиме, может быть значительной. Поэтому амплитуда СВЧ- напряжения на диоде в режиме ОНОЗ может на 1-2 порядка превышать напряжение в доменных режимах. Таким образом, выходная мощность диодов Ганна в режиме ОНОЗ может быть повышена на несколько порядков по сравнению с доменными режимами. Для режима ОНОЗ на первый план выступают тепловые ограничения. Диоды Ганна в режиме ОНОЗ работают чаще всего в импульсном режиме с большой скважностью и генерируют в сантиметровом диапазоне длин волн мощность до единиц киловатт.
Частота генераторов на диоде Ганна определяется в основном резонансной частотой колебательной системы с учетом емкостной проводимости диода и может перестраиваться в широких пределах механическими и электрическими методами.
В волноводном генераторе диод Ганна установлен между широкими стенками прямоугольного волновода в конце металлического стержня. Напряжение смещения подается через дроссельный ввод, который выполнен в виде отрезков четвертьволновых коаксиальных линий и служит для предотвращения проникновения СВЧ- колебаний в цепь источника питания. Низкодобротный резонатор образован элементами крепления диода в волноводе. Частота генератора перестраивается с помощью варакторного диода, расположенного на полуволновом расстоянии λв/2 и установленного в волноводе аналогично диоду Ганна. Часто диоды включают в волновод с уменьшенной высотой b1 ,который соединен с выходным волноводом стандартного сечения четвертьволновым трансформатором.
В микрополосковой конструкции диод включен между основанием и полосковым проводником. Для стабилизации частоты используется высокодобротный диэлектрический резонатор в виде диска из диэлектрика с малыми потерями и высоким значением ɛ, расположенного вблизи полоскового проводника МПЛ шириной w. Конденсатор служит для разделения цепей питания и СВЧ- тракта. Напряжение питания подается через дроссельную цепь, состоящую из двух четвертьволновых отрезков МПЛ с различными волновыми сопротивлениями, причем линия с малым сопротивлением разомкнута.Использование диэлектрических резонаторов с положительным температурным коэффициентом частоты позволяет создавать генераторы с малыми уходами частоты при изменении температуры ( ∼40 кГц/0C ).
Перестраиваемые по частоте генераторы на диодах Ганна могут быть сконструированы с применением монокристаллов железоиттриевого граната. Частота генератора в этом случае изменяется за счет перестройки резонансной частоты высокодобротного резонатора, имеющего вид ЖИГ- сферы малого диаметра, при изменении магнитного поля Н0 .Максимальная перестройка достигается при бескорпусных диодах, имеющих минимальные реактивные параметры. Высокочастотный контур диода состоит из короткого витка, охватывающие ЖИГ- сферу. Связь контура диода с контуром нагрузки осуществляется за счет взаимной индуктивности, обеспечиваемой ЖИГ-сферой и ортогонально расположенными витками связи. Диапазон электрической перестройки таких генераторов, широко используемых в автоматических измерительных устройствах, достигает октавы при выходной мощности 10-20 мВт.
Следует отметить, что расчет генераторов на диодах Ганна затруднен приблизительным характером данных как о параметрах эквивалентной схемы диода, так и о параметрах эквивалентной схемы колебательной системы, а также узла крепления диода ( особенно на высоких частотах).Обобщенную эквивалентную схему диода Ганна обычно задают в виде рис.3. Активную область диода представляют в виде параллельного соединения отрицательной проводимости ( -Gд ) и емкости С, значение которой в различных режимах работы могут существенно отличаться от «холодной» емкости диодной структуры C0 = ɛɛ0S/l. Величины Gд и С зависят как от постоянного напряжения U0 ,так и от амплитуды СВЧ- напряжения Um ,а также частоты. Поэтому весьма актуальной является проблема непосредственных измерений параметров эквивалентной схемы диодов в реальных режимах работы. Конструкции корпусов диодов Ганна и значения их паразитных параметров не отличаются от конструкции и параметров других диодов.
Срок службы генераторов Ганна относительно мал ,что связано с одновременным воздействием на кристалл полупроводника таких факторов, как сильное электрическое поле и перегрев кристалла из-за выделяющейся в нем мощности.
Диоды Ганна имеют различные области применения, что объясняется различием в уровнях выходной мощности и шумов на выходе ( у диодов Ганна уровень шумов на 20…30 дБ ниже, чем у ЛПД ),а также различием требований к источникам электрического питания. Диоды Ганна применяются в маломощных источниках СВЧ сигналов некоторых типах линий связи, измерительной технике, гетеродинах, генераторах накачки. Электрическое питание для них – низковольтные сравнительно простые генераторы напряжения.
Схема стабилизированного питания диодов Ганна в непрерывном режиме показана на рис.1.7
Рисунок 1.7- Схема стабилизации напряжения для питания диодов Ганна
Цепочка RC служит для предотвращения возникновения паразитных колебаний в цепи питания, что могло бы привести к выгоранию диода. Цепь питания должна также содержать устройство для стабилизации тока диода и осуществлять защиту от включения диода Ганна на напряжение противоположной полярности, что также привело бы к повреждению диода.
Генераторные диоды эксплуатируются в резонансных камерах, выполненных либо в виде полых резонаторов, либо в виде микросхем на диэлектрических подложках с резонирующими емкостными и индуктивными элементами, либо в виде комбинации резонаторов с микросхемами. Для уменьшения температурного изменения частоты резонаторы изготовляют из металла с низким коэффициентом линейного расширения. Микрополосковые резонаторы имеют относительно низкую добротность, что ведет к меньшей стабильности частоты и мощности и увеличивает шумы.
В микрополосковой камере для диодов Ганна этот недостаток устранен в результате использования высокодобротного диэлектрического резонатора.
Для прецизионной стабилизации частоты используют маломощные опорные высокостабильные генераторы СВЧ. Для подстройки и перестройки частоты генераторов может применяться механическая перестройка резонаторов. Частота диодов Ганна в определенных пределах может подстраиваться регулированием тока.
Эффективно применение на диодах Ганна высокодобротных настроечных диодов. Для увеличения отдаваемой мощности применяются камеры, в которых одновременно работает несколько однотипных генераторных диодов. При конструировании генераторных камер должны учитываться вопросы согласования выходного полного сопротивления генераторного диода со входным сопротивлением нагрузки
II. РАСЧЕТ ПАРАМЕТРОВ И ХАРАКТЕРИСТИК ДИОДА ГАННА
Расчет параметров диода выполняем при условии, что он является арсенид галлиевым.
-собственная концентрация ni=1,7∙1016 см-3
-температура Т0 =300 К
-постоянная Больцмана k= 1,38∙10-23 Дж/К
-диффузионная длина Ln= 1,8∙10-19 м
-концентрация акцепторной примеси Na= 2∙1016 см-3
-концентрация донорной примеси Nд= 1016 см-3
-диэлектрическая постоянная ε0= 8,85∙10-12 Ф/м
-диэлектрическая проницаемость ε= 12 Ф/м
-площадь барьера S= 10-5м2
-длина волны λ= 50 мкм
-максимально допустимая температура Tn max= 500 K