Смекни!
smekni.com

Устройство обнаружения сигналов в условиях априорной неопределённости (стр. 2 из 2)

Вышеизложенный подход, предполагает только вынесение решения в пользу одной из гипотез и не предусматривает никаких либо решений в отношении самой процедуры наблюдения. Наряду с ним известен класс решающих правил, называемых последовательными, для которых множество решений кроме

и
содержит еще один компонент: решение
о продолжении наблюдения. Этому решению сопоставляется область выборочного пространства
, попадание в которую выборки
не позволяет с требуемой надежностью принять или отклонить любую из гипотез
или
(“область неопределенности”). Таким образом, в последовательных решающих правилах реализуется обратная связь между результатами наблюдения и его дальнейшим ходом. Последовательные правила обладают рядом преимуществ, поэтому в дальнейшем им будет уделено значительное внимание.

Рассмотренные решающие правила относятся к классу детерминированных (нерандомизированных), поскольку они устанавливают однозначную связь между попаданием выборки

в область
или
и принятием соответствующего решения
или
. В принципе возможен другой подход, когда принятие того или иного решения связывается не только с попаданием выборки в соответствующую область, но и с результатом некоторого случайногодополнительногоэксперимента,несвязанногосрезультатаминаблюдения. Такой подход иногда упрощает анализ и синтез решающих правил, однако на практике он не применяется, поскольку доказана теорема, что любому рандомизированному решающему правилу может быть сопоставлено нерандомизированное правило, по меньшей мере не уступающее ему в эффективности. Следует обратить внимание, что хотя при последовательном анализе решение о продолжении или завершении наблюдения зависит от случайного результата наблюдения, последовательные правила не являются рандомизированными т.к. последние, как уже указывалось, предполагают проведение дополнительного эксперимента, несвязанного с результатами наблюдения.

1.2. Критерии оптимальности решающих правил.

Проектирование устройств обработки обычно начинается с поиска оптимального алгоритма, который обеспечивает наилучшие показатели качества, с точки зрения некоторого задаваемого разработчиком системы критерия, учитывающего (с тем или иным весом) затраты на получение информации, ее достоверность, объем и другие факторы. Однако оптимальный алгоритм может быть найден не всегда, кроме того, его реализация может оказаться неприемлемо сложной. В таких случаях ставится задача поиска квазиоптимального алгоритма и оценки его качества.

Выбор критерия оптимальности при анализе и синтезе устройств обработки информации, вообще говоря, зависит от точки зрения разработчика на назначение системы и особенности, возложенных на нее задач и не может быть строго регламентирован. Тем не менее, существуют общепринятые критерии, которые правильно отражают существенные стороны функционирования систем, допускают однозначную математическую формулировку, и в то же время достаточно наглядны и соответствуют здравому смыслу.

Применительно к проблеме фильтрации сигнала на фоне шумов в качестве критерия оптимальности часто принимаютмаксимум отношения сигнал/помеха на выходе соответствующего устройства. Этот критерий может считаться адекватным для устройств детектирования, дискретизации и накопления сигнала. Однако с точки зрения задач, решаемых на основании выходных данных этих устройств – обнаружения сигнала и оценки их параметров – критерий максимума отношения сигнал/шум является слишком “грубым” т.к. не учитывает ряд существенных особенностей этих задач.

1.3. Байесовский критерий оптимальности.

Среди используемых в современной теории обнаружения наиболее общим является критерий минимума среднего (байесовского) риска, в основу которого положены следующие рассуждения.

Вследствие случайного характера помех, а также возможных флуктуаций параметров сигналов, вынесение абсолютно достоверного решения при конечном времени наблюдения невозможно, т.е. решения

и
могут быть как правильными, так и ошибочными. Возможны следующие комбинации фактических ситуаций и принимаемых решений:

-

;
- правильное обнаружение;
;
– пропуск сигнала;

-

;
– правильное не обнаружение;
;
- ложная тревога.

Перечисленные ситуации образуют полную группу событий, сумма вероятностей которых =1:

.

Сопоставим каждому ошибочному решению некоторую стоимость (риск)

, стоимостью правильных решений примем равной нулю. Средний (байесовский) риск при этом равен:

.

Оптимальным считается решающее правило, обеспечивающее минимум среднего риска (байесовский критерий оптимальности). Правило, обладающее таким свойством, называют байесовским.

Подчеркнем, что для расчета величины байесовского риска необходима полная априорная информация о совместных вероятностях

и стоимостях ошибочных решений. Обоснованный выбор указанных величин, особенно в задачах с априорной неопределенностью, по меньшей мере, затруднителен. Поэтому характеристики байесовского решающего правила в теории обнаружения обычно рассматриваются как потенциальные при сравнении квазиоптимальных алгоритмов. Далее рассматриваются более удобные с точки зрения практического применения критерии, не требующие столь исчерпывающей информации.