Смекни!
smekni.com

Полупроводниковые диоды 3 (стр. 3 из 3)

Стабилитроны изготовляются из кремния. Это связано с тем, что в стабилитронах может быть использована только электрическая форма пробоя, которая является обратимой. Если пробой перейдет в необратимую тепловую форму, то прибор выйдет из строя. Поэтому величина обратного тока

в стабилитронах ограничена допустимой мощностью рассеивания.

Т.к. ширина запрещенной зоны кремния больше, чем у германия, то для него электрическая форма пробоя перейдет в тепловую при больших значениях обратного тока - отсюда целесообразность выполнения стабилитронов из кремния. Степень легирования кремния, т.е. величина его удельного сопротивления

, зависит от величины стабилизируемого напряжения, на которое изготовляется диод. Стабилитроны для стабилизации низких напряжений изготовляются из кремния с малым удельным сопротивлением; чем выше стабилизируемое напряжение, тем из более высокоомного материала выполняется диод. Изменение стабилизируемого напряжения от нескольких вольт до десятков вольт может быть достигнуто изменением удельного сопротивления кремния.

Основным параметром стабилитронов является напряжение стабилизации

и температурный коэффициент напряжения ТКН, характеризующий изменение напряжения на стабилитроне при изменении температуры на
, при постоянном токе.

ТКН может принимать как положительные, так и отрицательные значения в зависимости от влияния температуры на напряжение пробоя

. Для низковольтных стабилитронов, которые выполняются из низкоомных полупроводников, пробой имеет туннельный характер, а т.к. вероятность туннельного перехода электронов возрастает с увеличением температуры, т.е.
падает, то низковольтные стабилитроны имеют отрицательный ТКН. В p-n переходах высоковольтных стабилитронов, которые выполняются из высокоомных полупроводников, происходит пробой за счет ударной ионизации и U пробоя растет с повышением температуры, т.к. тепловые колебания решетки уменьшают длину свободного пробега носителей заряда и для того, чтобы они приобрели кинетическую энергию, нужную для ионизации валентных связей, надо повысить напряженность поля перехода.

Для высокоомных стабилитронов ТКН - положителен.

где U- напряжение на диоде, T- температура.

2.4 Варикапы.

Действие варикапов основано на использовании емкостных свойств р-п перехода.

Обычно используется зависимость величины барьерной емкости

от напряжения в области обратных напряжений. В общем виде зависимость величины зарядной емкости от напряжения имеет вид;

где А - постоянная, - высота потенциального барьера, U - внешнее напряжение,

- для резких переходов,

- для плавных переходов.

Варикапы могут быть использованы для различных целей как конденсаторы с переменной емкостью. Иногда их используют в параметрических усилителях. В принципе работы параметрического усилителя лежит частичная компенсация потерь в колебательном контуре, состоящем из катушки индуктивности L и конденсатора C, при периодическом изменении емкости конденсатора или индуктивности катушки (при условии, что изменение будет происходить в определенных количественных и фазовых соотношениях с частотой колебаний контура). В этом случае увеличение мощности электрических колебаний (сигнала) происходит за счет энергии того источника, который будет периодически изменять величину реактивного параметра. В качестве такого переменного реактивного параметра и используется варикап, емкость которого меняется в результате воздействия гармонического напряжения подаваемого от специального генератора накачки. Если с помощью варикапа и генератора накачки полностью скомпенсировать все потери контура, т.е. довести его до состояния самовозбуждения, то такая система носит название параметрического генератора.

Очевидно, что в качестве управляемой емкости может работать любой полупроводниковый диод, при условии, что величина его зарядной емкости достаточно велика. К специальным параметрическим диодам, работающим в параметрических усилителях на высоких и сверхвысоких частотах, предъявляются повышенные требования : они должны обладать сильной зависимостью емкости от напряжения и малым значением сопротивлением базы

для повышения максимальной рабочей частоты.

3. НАХОЖДЕНИЕ МАКСИМАЛЬНОГО ОБРАТНОГО НАПРЯЖЕНИЯ И ТОКА ПРОБОЯ

Таблица 1

Данные для решения задачи

Величина

Значение

510 Ом

100 В

400В

400мА

Нахождение тока номинального среднего:

(3.1)

Согласно уравнению (3.1)

Нахождение обратного напряжения:

=3.14
(3.2)

Согласно уравнению (3.2)

=3.14 · 100 = 314 В

Нахождение максимального обратного напряжения:

=
3 (3.3)

Согласно уравнению (3.3)

= 314 · 1.3 = 408.2 В

Нахождение тока пробоя:

=
+0.66 (3.4)

Согласно уравнению (3.4)

= 0.2 + 0.66 = 0.86 А

ЗАКЛЮЧЕНИЕ

В представленном реферате я рассмотрел вопросы касающиеся диодов, варикапов, стабилитронов рассмотрел их свойства, характеристики.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК ЛИТЕРАТУРЫ

1. Долженко О. В.,Королев Г. В. Сборник задач, вопросов и упражнений по радиоэлектронике: [ Текст]/ – М., «Высшая школа», 1986. – 103 с.

2. Моисеев А. С. Радиоэлектроника: [ Текст]/ – М.: 1991. – 110с.

3. Иноземцев А. В. Современная радиотехника: [ Текст]/ – М.: Россия, 2003. – 154с.