Смекни!
smekni.com

Деятельность Предприятия связи (стр. 13 из 18)

Для линий больше чем 200 км оптический предусилитель может быть подключен к интерфейсу входа оптического приемника. Входная чувствительность дополнительно увеличивается до – 40 дб. Таким образом, усилитель и предусилитель применяются в данном дипломном проекте.

Итак, оптический усилитель и предусилитель используются для непосредственного усиления оптического сигналов в диапазоне длин волн λ=1530нм до λ=1560нм без электрооптического преобразования. Рассмотрим функциональную схему оптического усилителя изображенную на рисунке 3.9


Рисунок 3.9 - функциональная схема оптического усилителя

Оптический сигнал вводится в волокно лигированное эрбием, накачка лазера поднимает потенциал энергии фотонов с целью получения высокой оптической мощности на выходе усилителя. Уменьшение тока и температурные колебания изменяют мощность лазерного излучения. Диод контроля выбирает часть лазерного света из фотоэлектрической цепи и передают его для управления лазером, блок термоконтроля обеспечивает требуемое охлаждение независимо от окружающей температуры и мощности лазерного излучения.

Усиление полученное таким путем, очень линейно, поэтому не происходит искажений интермодуляции. Уровень выходного сигнала может изменяться от +3 до+ 6 дБм и более мощный усилитель от +13 до +16 дБм. Лазер работает в одночастотном режиме с шириной спектра излучения менее 0,5 нм. Температурная длина волны лазеров с распределенной обратной связью составляет величину около 0,1 нм/к.

На рисунке 3.10 представлена функциональная схема оптического предусилителя. Входной оптический сигнал вместе с излучением лазера накачки поступает в светодиод легированный эрбием, где происходит перераспределение световой энергии между излучениями. Далее через оптический вентиль излучение поступает на оптический фильтр, настроенный на оптическую длину волны, где происходи удаление паразитных мод. Уровень входного сигнала изменяется от – 45 до -15 дБм. В случае использования оптического предусилителя в качестве фотоприемника используется лавинный фотодиод стандартной мощности. Оптический предусилитель используется в паре с оптическим усилителем, тогда как оптический усилитель может использоваться отдельно.



Рисунок 3.10 - функциональная схема оптического предусилитель

Подобно сигналу контроля за температурой TEMP, поступает в секцию контроля блока сигнализации (4) в порядке контроля за диодным модулем.

Сигнал данных D622A регенерируется с точной амплитудой и синхронизацией посредством решающей схемы (два D триггера соединенных последовательно) в регенераторной секции (3) и появляется на выходе D622.

Сигнал тактовой частоты Т622 генерируется в управляемом напряжением генераторе (VCO). Его частота определяется фильтром поверхностной волны (SAW) и линией задержки. VCO-выход OUT поступает обратно через линию задержки SAW на вход А и со сдвигом фазы на 90 градусов – через линию №4 на вход В. Фаза генератора ТЧ / частота ГТЧ контролируется на входе С посредством схемы фазового сдвига. Управляющее напряжение VCO генерируется фазовым детектором. За этим низкочастотное фильрование и усиление, управляемое напряжением С генерируется на выходе D фазового детектора.

Функциональный блок исполнителя сигнализации (4) собирает сообщения, выполняет предварительную обработку и передает данные блока контроля через шину сигнализации на центральный блок контроля (ZUW).

Выдаются сообщения о следующих сигналах:

оптический входной уровень на F1in

температура фотодиода

состояние захвата частоты регенераторного шлейфа управления.

3.3.4 Передача информации в секционных заголовках

Информация может быть передана в дополнение к полезной нагрузке в заголовке сигнала STM. Вместимость заголовка в зависимости, от которого основные каналы составляют 64 кбит/с или полностью заполненный столько битов, насколько битов был предназначен специфический канал.

Структура заголовков SOH фрейма STM-16 в приложении 6.

Двойная внутренняя связь данных каналов определены в соответствии с ITU-T Рекомендацией G.708. В дополнение к ним, вспомогательные каналы могут также использоваться в предложенном оборудование линии SМА 16:

Для стороны линии:

- канал связи данных DCCR;

- канал связи данных DCCM;

- разработка служебных каналов RS;

- разработка служебных каналов MS;

- вспомогательные каналы AUX1 к AUX5

Для стороны компоненты:

- канал связи данных DCCR или DCCM (переключаемые);

- вспомогательные каналы K1 к K3.

Канал cвязи данных DCCR используется внутренне, чтобы контролировать линии для разделов регенератора.

Контролирующие данные переданы в RSOH в байтах D1, D2 и D3.

Канал связи данных DCCМ (подобный DCCR каналу) для задач управления в мультиплексных разделах. Байты D4 до D12 используются для передачи данных. есь имеется два сигнала служебной связи со скоростью 64 кбит/с., чтобы обработать запросы служебных каналов по регенерационной секции. В соответствии с ITU-T Рекомендациями G.708 и G.781, байт E1 RSOH был предназначен для создания служебных каналов запроса, т.е. могут быть переданы по мультиплексным секциям без обращения к линейным регенераторам SLR.

Для создания служебных каналов был назначенный байт E2 MSOH в соответствии с ITU-T. Передача служебных каналов модуль DTE, служебные каналы пульта управления TBF и телефонная трубка необходима для операции передачи служебных каналов. Телефонное оборудование можно обеспечивать или отборными или коллективными средствами запроса как требуется. DTE вставной модуль также обеспечивает 4-проводный интерфейс VF E&M сигнализирующий коллективный запрос по каждой разработке служебных каналов.

Заголовок SOH состоит из 2-х блоков: RSOH – заголовка регенераторной секции и МSOH – заголовка мультиплексной секции, имеет формат 9х36 байтов.


Глава 4 Управление элементами сети

Стандарт SDH включает мощные средства управления синхронно-цифровой сетью, являющиеся ее ключевыми элементами. Фирма SIEMENS использовала свои обширные возможности и опыт, накопленный в традиционных сетях, для оптимального использования дискриптора секции SDH с целью развития гибких интегрированных систем управления.

Установка систем управления SIEMENS в сеть SDH позволяет оператору дистанционно управлять всем линейным и мультиплексорным оборудованием, а также системами оперативного переключения. Обработка аварийных сигналов, тестирование по запросу и даже выдача линейных плат в рамках отдельной системы организуются с помощью простых в эксплуатации графических интерфейсов.

Заложенные прикладные программы предусматривают непрерывный контроль качества передачи для упрощения профилактического техобслуживания. Дистанционное выделение линий, маршрутизация и распределение частотной полосы осуществляется проще, чем ранее.

Поскольку SDH является международным стандартом, системы SDHSIEMENS могут стыковаться с оборудованием других марок. Например, владельцы сетей могут использовать преимущества высокомощных систем SIEMENSSDH независимо от происхождения имеющегося у них оборудования. Сеть оборудования разных поставщиков на сегодняшний день стала реальностью.

4.1 Полная защита сети

В системах SIEMENSSDH сочетается испытанное программное обеспечение и электроника, создающие оптимальную надежность и гибкость сети.

Синхронные широкополосные системы оперативного переключения не только управляют плезиохронными и синхронными сигналами, они также оснащены не блокирующимся матричным переключателем, создающим уникальную возможность предохранительного переключения в высокоскоростных магистральных сетях. Такие системы с возможностью мультиплексирования обеспечивают аналогичный уровень защиты на уровне региональных сетевых узлов.

Мультиплексоры ввода/выделения, производимые SIEMENS могут конфигурироваться в многоцентровые самовосстанавливающиеся сетевые кольца. В случае разрыва волокна между двумя узлами, последние автоматически конфигурируются заново, и трафик направляется обратно вокруг кольца по другому волокну. Таким образом, работа продолжается непрерывно. Такой принцип защиты сети распространяется на все системы SIEMENSSDH. Все пропускные устройства (элементы сетей и транспортные системы) предусматриваются со встроенным резервированием. Большинство функций аварийной сигнализации и техобслуживания автоматизированы модулями управления сетью. Все это вытекает из стремления SIEMENS обеспечить максимальную надежность сети SDH.

4.2 Конфигурирование сети

Ввод и выделение сигналов является одной из многих функций, упрощенных благодаря оборудованию SIEMENSSDH. При плезиохронном мультиплексировании трафик, передаваемый на различных скоростях и частотах, делится на уравновешенные биты перед их объединением в высокоскоростной сигнал. Для уравновешивания битов с информацией необходимо добавлять порожные биты, предназначенные для заполнения.

При вводе/выделении сообщений на следующем сетевом узле, необходимо демультиплексировать весь высокоскоростной сигнал, убрать биты заполнения и восстановить биты с информацией в их исходном виде. Это необходимо, даже когда сигналы направляются в другой пункт назначения. Затем весь трафик вновь уплотняется, смешивается с другими битами заполнения и комбинируется в другой высокоскоростной сигнал. Такой процесс требует наличия в каждом узле двух тыльноспаренных мультиплексоров, что повышает стоимость оборудования и увеличивает потенциальный объем ошибок.