Подставляя численные значения в (3.2.9), получаем:
Нагрузкой нашего связного передатчика является фидер с входным сопротивлением 75 Ом, поэтому после трансформации сопротивления с коэффициентом ј, т.е. из большего в меньшее (см. раздел 4 РАСЧЁТ ЦЕПИ СОГЛАСОВАНИЯ) получаем, что Rкэ = 75/4 = 18,75 Ом. Поскольку полученное значение этого сопротивления очень близко к рассчитанному значению этого же сопротивления по формуле (3.2.9), то нет смысла проводить коррекцию проведённых ранее расчётов коллекторной цепи.
Для транзисторов УВЧ и СВЧ существенную роль играют LC – элементы, образующиеся между кристаллом и корпусом транзистора. При расчёте входной цепи транзистора с ОЭ предполагается, что между базовым и имиттерным выводами транзистора по радиочастоте включен резистор Rдоп и Rбк(см. рис. 3.3.1), сопротивление которого составляет:
Подставляя численные значения в (3.3.1) и (3.3.2) получаем:
Далее расчёт будем вести в соответствии с методикой [5] стр. 112 – 114.
1. Амплитуда тока базы определяется соотношением:
(3.3.3)где коэффициент c равен:
(3.3.4)Подставляя численные значения в (3.3.3) и (3.3.4) получаем:
2. Напряжение смещения на эмиттерном переходе при q = 90° находится как:
(3.3.5)Где Еотс = 0,7 В (для кремниевого транзистора).
Подставляя численные значения в (3.3.5) получаем:
3. Значение максимального обратного напряжения на эмиттерном переходе определяется формулой:
(3.3.6)Подставляя численные значения в (1.12) получаем:
По результатам видно. что полученное значение не превышает допустимое значение (Uбэ доп = 4 В).
4. Рассчитаем параметры эквивалентной схемы входного сопротивления транзистора при включении с общим эмиттером:
(3.3.7)При расчёте входной индуктивности необходимо добавить к Lэ ещё 3 нГн с учётом погонной индуктивности соединительного проводника с кристаллом, тогда получим:
(3.3.8)При расчёте rвх оэ необходимо учесть, что Ска = Ск/2, а к Lэ также добавляется погонная индуктивность 3 нГн, после подставления в (3.3.8) необходимых значений имеем:
(3.3.9.)после подстановки значений в (3.3.9), имеем:
(3.3.10)Подставляя в (3.3.10) численные значения величин, получаем:
5. Активная и реактивная составляющие комплексного выходного сопротивления транзистора
вычисляются по формулам: (3.3.11) (3.3.12)Подставляя в (3.3.11), (3.3.12) численные значения величин, получаем значение входного сопротивления транзистора на частоте 80 МГц:
ZВХ = 2,535 + j 3,249 (Ом). (3.3.13)
6. Расчёт входной мощности транзистора:
(3.3.14)После подстановки получаем:
Вт7. Расчёт коэффициента усиления по мощности транзистора
(3.3.15)После подстановки имеем:
8. Определение постоянных составляющих базового и эмиттерного токов:
(3.3.16)Подставляя численные значения величин в (3.3.16), получаем:
После выполнения расчёта входной (базовой) и коллекторной цепи транзистора (при наихудших условиях) видно, что в выбранном режиме транзистор может обеспечить требуемую мощность 6 Вт на выходе передатчика с Kp =5,119, имеет при этом достаточно высокий КПД » 66,4%.
Теперь определим мощность рассеиваемую в транзисторе, значение которой является исходным параметром для расчёта температуры в структуре транзистора и системы его охлаждения.(в данной работе расчёт этих температур не проводится).
Ррас» Рк max +Рвх = 4,572 + 1,465 = 6,037 Вт.
В это соотношение подставлены величины рассчитанные по (3.2.8) и (3.3.14). На этом расчёт базовой цепи заканчивается.
Выходная цепь активного элемента (АЭ) содержит цепь согласования (ЦС) с нагрузкой и источник питания, Эти элементы можно включить последовательно или параллельно. Поэтому, в зависимости от способа включения этих элементов в цепях питания выходных цепей ГВВ цепи питания делят на последовательные и параллельные соответственно.
К схемам питания выходных цепей ГВВ предъявляются следующие требования:
- Вся первая гармоника выходного тока должна проходить через нагрузку;
- Количество «побочных» цепей должно быть минимальным, т.к. большое их количество ведёт к уменьшению выходной мощности, а для каскада прямой задачей которого как раз и является усиление по мощности такое свойство не к чему.
И последовательная и параллельная схемы питания выходных цепей ГВВ удовлетворяют перечисленным требованиям. Но хотя схемы последовательного питания близки к идеальным при рациональным выборе блокировочных элементов, применять их можно лишь с такими цепями согласования, в которых имеется путь для постоянной составляющей выходного тока АЭ. При схемах ЦС, в которых элементом связи с АЭ является ёмкость необходимо использовать схемы параллельного питания (см. рис 3.4.1). Поэтому для нашего оконечного каскада в связи с тем, что цепью согласования является трансформатор сопротивления на длинных линиях (см. раздел 4 РАСЧЁТ ЦЕПИ СОГЛАСОВАНИЯ) воспользуемся именно такой (рис. 3.4.1) схемой питания выходной цепи ГВВ.
Cбл1 в параллельной схеме питания выходной цепи ГВВ необходима для того, чтобы постоянная составляющая коллекторного тока не попадала в нагрузку, т.е. был обрыв для Iк0. Lбл защищает источник питания от высокочастотной составляющей коллекторного тока, а Сбл2 уводит высокочастотные помехи из цепи питания на землю, чтобы они не попадали в коллекторную цепь.
Рис. 3.4.1 Цепь питания выходной цепи ГВВ (параллельная схема)
Для того чтобы блокировочные элементы выполняли свою функцию необходимо правильно выбрать их номиналы. Для этого воспользуемся методикой предложенной в [6] на стр. 90 – 93 в соответствии с которой выражения для определения ноиналов блокировочных элементов следующие:
(3.4.1)По другому (3.4.1) можно записать как:
(3.4.2)Подставив численные значения в (3.4.2) получаем ориентировочное величинуСбл1:
(3.4.3) (3.4.4)Подставив численные значения в (3.4.4) получаем ориентировочное величину Lбл:
(3.4.5) (3.4.6)