Смекни!
smekni.com

Проектирование выходного каскада связного передатчика с частотной модуляцией (стр. 7 из 8)

С1 = 0,8989; L2 = 1,478; С3 = 1,721; L4 = 1,721; С5 = 1,478; L6 = 0,8989 (5.1.2)

В том же источнике определяются коэффициенты нормироания для ёмкостей и индуктивностей, входящих в выходной фильтр по формулам:

(5.1.3)

(5.1.4)

Домножая нормированные номиналы (5.1.2) на соответствующие коэффициенты нормирования (5.1.3) или (5.1.4) получаем расчётные значения номиналов для элементов входящих в наш выходной фильтр, а именно:

С1 = 39,74 пФ; L2 = 0,44 мкГн; С3 = 76,35 пФ; L4 = 0,513 мкГн; С5 = 65,34 пФ; L6 = 0,2679 мкГн (5.1.5)


Рис. 5.1.1 Выходной фильтр Чебышева 6-го порядка

На этом электрический расчёт выходного фильтра закончен.

5.2 Конструктивный расчёт

Главной задачей данного конструктивного расчёта является расчёт геометрии катушек индуктивности входящих в состав выходного фильтра. Это необходимо для выполнения помимо требований к заданной индуктивности, высокой добротности, определённой стабильности, также и требований к электрической прочности, допустимого нагрева, механической прочности и т.д.

В транзисторных ступенях благодаря низким значениям постоянного и переменного напряжений электрическую прочность обеспечить не трудно: расстояния в несколько десятых долей миллиметра между витками достаточно, чтобы напряжённость поля не превышала допустимую: 500…700 В/мм по воздуху и 250…300 В/мм по поверхности керамического или другого подобного каркаса. Вместе с тем ток радиочастоты, протекающий по катушке, может достигать большой величины и вызвать её значительный нагрев.

Конструктивный расчёт спирали цилиндрической проволочной катушки проведём в соответствии с методикой, описанной в [3] стр. 292 – 296.

Уточним расчётное значение индуктивности (см. 5.1.5) катушек с учётом влияния экрана катушки: экран уменьшает индуктивность катушки в соответствии с законом Лоренца. Если диаметр экрана, по крайней мере, вдвое больше диаметра катушки (допустим что в нашем случае это так ), то его влияние не велико и следует принять расчётное значение индуктивности катушек Lрасч» (1,1…1,2) L, т.е. получим:

L2 = 0,528 мкГн; L4 = 0,6156 мкГн; L6 = 0,32148 мкГн (5.2.1)

Зададимся соотношением длины намотки катушки l к её диаметру D, а именно l/D=0,6, поскольку наши катушки, очевидно, будут диаметром меньше 50 мм.

Диаметр провода катушек выберем исходя из соображений её допустимого нагрева.

В связи с трудностями учёта как степени нагревания катушки (активное сопротивление провода катушки сложным образом зависит от частоты тока f, материала и диаметра провода, диаметра катушки и т.д.), так и разнообразных условий её охлаждения воспользуемся эмпирической формулой для определения диаметра цилиндрических однослойных, с естественным (конвекционным) охлаждением катушек.

(5.2.2)

В этой формуле d – диаметр провода, мм I – радиочастотный ток, А (действующее значение, т.е. амплитудное значение тока делённое на

); f – частота радиочастотного тока, МГц; DT – разность температур провода и окружающей среды (возьмём DT =30 °С (°К)), К. Подставив в (5.2.2) численные значения, с учётом рассчитанного по (4.1.3) амплитудного значения радиочастотного тока нагрузки имеем:

(5.2.3)

Из стандартного ряда диаметров провода выбираем самое близкое значение к расчётному, а именно, d = 0,49 мм. Поскольку диаметр провода < 1мм, то для жёсткости и механической прочности катушки необходимо наматывать на керамический сердечник.

Число витков спирали катушек рассчитывается по формуле (5.2.4), где F(l/D) коэффициент формы катушки, представленный на графике 10.3 в [3] (при выбранном для катушек отношении l/D =0,6 - ® по графику F(l/D) = 0,01), Lрасч – расчётное значение индуктивности в мкГн.

(5.2.4)

Подставив в (5.2.4) численные значения имеем:

(5.2.5)

Зададимся диаметром 2-ой и 4-ой катушек (см. рис. 5.1.1 и рис 5.2.1) D = 20 мм, а диаметром 6-ой катушки D = 15 мм тогда зная число витков в катушках и заранее заданное l/D =0,6 можем расс читать длину катушек lк и, соответственно, шаги намоток g по формулам:

(5.2.6)

Подставляя численные значения в (5.2.6) имеем:

(5.2.7)


Рис. 5.2.1 Вид катушки индуктивности с сердечником

Теперь можно определить длину провода в катушках по формуле (5.2.8), в которой длину хвоста возьмём 2 см:

(5.2.8)

Подставив численные значения в (5.2.8) имеем:

(5.2.9)

На этом конструктивный расчёт выходного фильтра заканчивается.

6. Выбор стандартных номиналов

В характерных радиочастотных каскадах передатчиков (генераторах с внешним возбуждением), применяются разнообразные радиодетали - катушки индуктивности, отрезки полосковых и коаксиальных линий, конденсаторы, резисторы. Но поскольку расчётные значения номиналов получаются очень разные, то требуется подбор наиболее подходящего номинала из стандартных значений, причём не всегда можно обеспечить расчётное значение, поскольку иногда имеются ограничения на количество элементов, на вес и на стоимость радиопередатчика. Но, прежде всего при подборе элемента стандартного номинала нужно учитывать мгновенные амплитудные значения токов и напряжений, протекающих через элементы, мощность, проходящую через элементы, рассеиваемую мощность на элементах, электромагнитную совместимость и диапазот рабочих частот. Отметим также, что поскольку выходной фильтр должен иметь значения номиналов входящих в него элементов в соответствии расчётными, то точность подбора каждой ёмкости обеспечивается посредством параллельного включения двух конденсаторов, один и из которых выбирается чуть меньше рассчитанного номинала (например С1) а другой подстроечный для точной настройки (например,

).

В нашем оконечном мощном каскаде связного передатчика с ЧМ, в результате расчётов были получены следующие значения номиналов:

Резисторы:

R1 = 61,17 Ом; R2 =2,34 Ом; Rдоп = 9,478 Ом

Конденсаторы:

Сбл = 73,56 пФ; Сбл1 = 39,187 нФ; Сбл2 = 195,95 пФ; С1 = 39,74 пФ; С3 = 76,35 пФ; С5 = 65,34 пФ;

Катушки индуктивности:

Lбл = 14,657 мкГн; L2 = 0,44 мкГн; L4 = 0,513 мкГн; L6 = 0,2679 мкГн;

После выбора элементов с номиналами из стандартного ряда:

Резисторы:

R1 = Ом; R2 = Ом; Rдоп = Ом

Конденсаторы:

Сбл = пФ; Сбл1 нФ; Сбл2 = пФ;

С1 = 39,74 пФ; С3 = 76,35 пФ; С5 = 65,34 пФ;

= пФ;
= пФ;
= пФ;

Катушки индуктивности:

Lбл = мкГн; L2 = мкГн; L4 = мкГн; L6 =мкГн;

Заключение

На сегодняшний день все вопросы касающиеся радиосвязи и средств её непосредственного обеспечения очень актуальны, тем боле, что радиосвязь с каждым днём всё глубже проникает во все сферы деятельность человека, и позволяет оперативно передавать информацию от абонента к абоненту, практически мгновенно, минуя огромные расстояния.

Обслуживание уже существующих средств обеспечения радиосвязи и разработка новых лежат на плечах радиоинженеров всего мира, тем более что с каждым днём всё острее идёт борьба за освоение новых диапазонов рабочих частот и методов кодирования (сжатия) и декодирования информации в реальном масштабе времени при передаче её посредством радиосвязи.

Освоение большого количества материала при подготовке радиоинженеров занимающихся вопросами радиосвязи обязательно должно сопровождаться и достаточным количеством практической деятельности, для более полного понимания проблематики изучаемого вопроса. Одним из видов практической деятельности является курсовое проектирование, основной задачей которого является упорядочение полученных знаний в процессе самостоятельной разработки, например какого-либо блока РПУ.

Таким образом, в ходе выполнения данной курсовой работы был спроектирован оконечный мощный каскад связного передатчика с ЧМ, который полностью удовлетворяет техническим требованиям, описанным в задании на проектирование. Поскольку для проектирования даже такой малости, как всего лишь выходного каскада, требуется детальная проработка учебной и методической литературы, то выполнение данной работы позволило подробней изучить материал курса радиопередающих устройств, а значит, внесло свою лепту в процесс обучения и в будущем, полученный ценный практический опыт обязательно пригодится в будущей инженерной деятельности, которая и является основной целью обучения на рдиотехническом факультете.