Усилители импульсов согласуют по мощности выход СИФУ с импульсными трансформаторами. Кроме того, на УИ происходит сдваивание импульсов.
Логическое устройство раздельного управления служит для формирования сигналов кл.В и кл.Н, управляющих ключами В и Н в датчике тока, переключателе характеристик и цепи импульсных трансформаторов.
Командой для УЛ на переключение комплектов является изменение полярности сигнала Uнз, пропорционального напряжению Uрт и коэффициенту передачи НЗ.
Контроль отсутствия тока через тиристоры производится датчиком проводимости вентилей.
Элемент И осуществляет логическое умножение блокировочных сигналов Uби и Uбв и имеет на выходе логический сигнал единичного уровня в тот промежуток времени, когда отсутствует ток через тиристор и управляющий импульс на тиристоре.
При появлении команды на переключение комплектов (напряжение Uнз изменило знак) и наличии на выходе элемента И сигнала единичного уровня УЛ формирует сигнал Uр=0 нулевого уровня, который запускает элемент отсчета выдержки времени. На период выдержки времени импульсные трансформаторы обоих комплектов находятся в отключенном состоянии, дополнительно сигнал Uр=0 запрещает формирование импульсов управления в СИФУ. По истечении выдержки времени происходит подключение импульсных трансформаторов к заданному комплекту, одновременно сигнал Uр=1 разрешается формирование импульсов в СИФУ.
4.2. Принцип работы управляющего органа СИФУ
Принципиальная схема формирователя импульсов включает в себя узлы: фильтр Ф, пороговые элементы ПЭ1 и ПЭ2, генератор пилообразного напряжения ГПН, формирователь синхронизирующих импульсов ФСИ, нуль-орган НО, RS-триггер Т, формирователь длительности импульсов ФДИ.
Фильтр осуществляет сдвиг синхронизирующего напряжения на угол 30 эл.град., совмещая тем самым начало зоны расширения выдачи импульсов на тиристор с точкой естественной коммутации силового напряжения на тиристорах. Выходное напряжение фильтра с помощью пороговых элементов ПЭ1 и ПЭ2 преобразуются в две противофазные последовательности прямоугольных импульсов.
Величина порога (зона нечувствительности) определяется падением напряжения на переходах база-эммиттер VT1 и VT2. Длительность импульса единичного уровня (около 176 эл.град.) определяет зону разрешения выдачи управляющих импульсов на соответствующий тиристор.
В промежуток времени перекрытия импульсов нулевого уровня на входах DD1.3, DD1.4 на выходе ФСИ формируется синхроимпульс единичного уровня длительностью около 8 эл.град. Этот импульс открывает транзистор VT8, осуществляющий разряд интегрирующей емкости С3 до нулевого уровня. После исчезновения синхроимпульса напряжение на выходе ГПН начинают линейно возрастать от 0 до 10 В за счет подачи на инвертирующий вход усилителя DА1 напряжения – 15В. Через R11 и R13 уровень возрастания выходного напряжения ГПН до прихода очередного синхронизирующего импульса может изменяться сменным резистором R11.
Момент равенства по модулю разнополярных напряжений ГПН и УО фиксирует нуль-орган на операционном усилителе DА2, полярность входного напряжения которого в этот момент меняется с положительной на отрицательную. Триггер воспринимает отрицательное выходное напряжение DА2 как логический сигнал нулевого уровня, изменяя свое состояние, соответствующее изменению логического сигнала на выходе DD2.2 с единичного уровня на нулевой. Появление на выходе ФДИ нулевого сигнала приводит к разряду конденсатора С2 по цепи: R14, выход DD2.2, V7. Во время разряда, определяемого элементами R14, C2, на диоде VD7 создается падение напряжения, запирающее VT6. В этот момент на входах микросхем DD1.2, DD2.3, DD1.1 появляется сигнал нулевого уровня. Прохождение импульса ФДИ в канал а или
определяется наличием на втором входе микросхем DD1.2, DD1.3 единичного сигнала от пороговых элементов.После формирования управляющего импульса триггер Т ждет прихода очередного синхроимпульса, чтобы вернуться в исходное состояние и быть подготовленным к формированию следующего управляющего импульса. Установка Т в исходное состояние возможна только при одновременном наличии на входах Т сигнала единичного уровня от НО на входе DD2.1 и сигнала нулевого уровня на каком-либо из входов микросхемы D2.2. Во время стационарной работы комплектов тиристоров Т устанавливается в исходное состояние проинвертированными синхроимпульсами, поступающими с выхода микросхемы DD2.4, и таким образом в начале каждого полупериода синхронизирующего напряжения становится готовым для формирования следующего управляющего импульса.
4.3.Описание силовой части схемы
При управлении двигателями постоянного тока плавное регулирование скорости достигается за счет изменения напряжения питания цепи якоря или обмотки возбуждения. В режиме торможения энергия вращающихся частей отдается в сеть. Регулировка напряжения производится за счет угла задержки отпирания а тиристоров тиристорного преобразователя постоянного тока ТП. В режиме пуска идет набор двигателем скорости, а следовательно, повышение напряжения. Пусковой ток в несколько раз больше статического. Поэтому при пуске а @ p/2 для уменьшения тока. По мере пуска ток снижается, а напряжение на двигателе увеличивается. Когда ток уменьшится до какого-то минимального значения, двигатель набирает необходимую скорость и угол аустанавливается в статическое положение @p/3. Установку угла управления осуществляют за счет контроля тока при помощи цепей обратной связи. При выходе на номинальную характеристику, соответствующую углу амин ,двигатель вращается с номинальной скоростью и развивает номинальный момент.
В режиме торможения задается угол управления b, который переводит двигатель на соответствующую характеристику преобразователя, что и приводит к торможению двигателя. Углы bтакже, как и азадаются так, чтобы работа ТП была в токовом коридоре.
В данном курсовом проекте рассматривается схема реверсивного ТП с раздельной системой управления. Реверс выпрямленного напряжения осуществляется за счет двух антипараллельных трехфазных мостовых комплектов тиристоров. В каждый момент времени работает только один комплект (выпрямительный или инверторный). Переключение между комплектами производится с помощью логики в СУ.
Система управления формирует сдвоенные импульсы управления тиристорами для обеспечения работы схемы в зоне прерывистых токов.
1. Григорьев О.П. и др. Тиристоры. Справочник. – М. Радио и связь.1990.
2. Зимин Е. Н. и др. Электроприводы постоянного тока с вентильными преобразователями. – М.: Энергия, 1981.
3. Перельмутер В. М. и др. Системы управления тиристорными ЭП постоянного тока. – М.: Энергия, 1987.
4. Чебовский О. Г. и др. Силовые полупроводниковые преобразователи: справочник / Чебовский О. Г., Моисеев А. Г. – М.: Энергоатомиздат, 1985. – 400 с.: ил.
5. Чиженко И.М. и др. Основы преобразовательной техники: учебное пособие / Руденко В. С., Сенько В. И., Чиженко И.М. – М.: Высшая школа, 1980. – 430 с.: ил.