Поиск оператора состоит из двух шагов. На первом шаге составляется упорядоченный список операторов – кандидатов. Выбор которых основан на простом сравнении первообразных с разницы
с первообразными из списка дополнения операторов. Второй шаг состоит в применении программы доказательства теорем для определения того, есть ли в указанном списке дополнений дизъюнкты, которые могли бы продолжить вывод после применения этого оператора. Если этот шаг прошел успешно, оператор – кандидат с соответствующими значениями параметров рассматривается как подходящий для уменьшения разницы .Когда таким образом оператор – кандидат найден, условия его применения принимаются как новые подцели системы.
Иерархию целей, подцелей и моделей, порожденную в процессе поиска, можно представить в виде дерева поиска. Каждая вершина такого дерева имеет вид и соответствует заданию достижения модели целевого списка с указанной модели окружения. Пример дерева поиска приведен на рисунке 2.2.
Рисунок 2.2 – Дерево поиска в системе STRIPS
2.3 Реализация систем планирования
Практическая реализация систем планирования включает такие компоненты: модель мира, операторные схемы и цель системы. В частности языком Prolog модель мира, соответствует рис. 2.1 может быть описана набором утверждений:
is_a(room1,room,always)
is_a(room2,room,always)
is_a(room3,room,always)
is_a(door12,door,always)
is_a(door23,door,always)
is_a(box1,object,always)
is_a(box2,object,always)
is_a(box3,object,always)
connects(door12,room1,room2,always)
connects(door23,room2,room3,always)
stands(door12,opened,now)
stands(door23,opened,now)
is_in(box1,room1,now)
is_in(box2,room2,now)
is_in(box3,room3,now)
is_in(robot,room2,now)
is_at(robot,door12,now)
Не тяжело понять содержание базы данных. Она формируется соотношениями: is_a – принадлежность объекта класса, connects – объединение двух объектов третьим, stands – состояние объекта, is_in – местоположение объекта; is_at – общее расположение одного объекта возле другого.
Нужно отметить, что такое описание должно включать противоречия, для чего необходимо обеспечить специальную процедуру.
Операторные схемы системы планирования фактически представляют описания действий, что могут выполнятся в рамках описанной модели мира. Для мобильного робота это могут быть действия: открыть (закрыть) двери, перейти в другую комнату перейти к объекту, переместить его к другому объекту и т.д.
Каждая операторная схема практически содержит в себе:
а) утверждение результата реализации операторной схемы – действия, которые обеспечивает операторная схема;
б) тест выполнения – проверка отсутствия реализованного целевого факта;
в) тест валидности – проверка принадлежности операторной схемы для обеспечения цели системы планирования;
г) список предусловий: постановление (и выполнение) условий, что предшествуют выполнению действий операторной схемы;
д) список исключений – список событий, что устарели на момент выполнения операторной схемы;
е) список добавлений – список событий, что вносятся операторной схемой.
Задания в системе формируются как желанный факт состояния системы. Если такой факт не находится в базе данных, вызывается решебник, что реализует поиска решений. Поиск решения предвидит:
а) поиск предикативной схемы, которая соответствует поставленному заданию;
б) выполнение списка предусловий
в) выполнение списка удаления;
г) выполнение списка добавления.
Среди перспектив развития систем планирования интеллектуальных роботов необходимо отнести, во-первых, расширение проблемной отрасли. Такое расширение ведет к увеличению операторных схем и их усложнению. В случаях, когда одна цель может быть достигнута несколькими путями, возникает необходимость предварительной оценки сложности операторной схемы. При этом каждой схеме с набора, что обеспечивает одинаковые цели, соответствует коэффициент, а сам набор будет нечетким множеством. Во-вторых, функционирование роботов в реальном времени будет требовать улучшения процедур нахождения адекватных операторных схем, в том числе м учетом алгоритмов «отката», обновления предварительного состояния предметной отрасли. В-третьих, расширение проблемной отрасли будет определяться увеличением круга операций, выполняемых роботом, а последовательность выполнения операций будет определять стратегию действий робота.
2.4 Сегментация изображений для ИМР
С помощью системы технического зрения можно автоматизировать разнообразные технологические процессы – распознавание промышленных деталей, их сортировку, контроль размеров, укладку продукции в тару, контроль установки сверла или сварочной головки в заданное место контактной площадки и ряд других. Для решения подобных задач повсеместно проводится анализ трехмерных сцен с помощью двухмерных проекций – изображений, получаемых с помощью СТЗ.
Наибольшее распространение получили СТЗ, в которых видеодатчиками служат матрицы или линейки чувствительных элементов, а также электронно-лучевые трубки. Источником информации о состоянии поля зрения СТЗ служит световое поле, в общем случае неоднородное и нестационарное. С позиций зрительного восприятия световое поле в каждой точке пространства характеризуется яркостью, цветовым тоном и насыщенностью, которые могут меняться во времени. Световое поле можно описать также спектральной функцией потока излучения в направлении наблюдателя или распределением освещенности в плоскости чувствительного элемента видеодатчика. В подавляющем большинстве случаев на практике используются одноцветные (ахроматические) изображения, которые можно представить некоторой функцией в пространстве и времени, характеризующей яркость, освещенность, степень почернения фотопленки и т. д.
Для определенности будем рассматривать функции изображения В (х, у, t), характеризующие распределение яркости в поле зрения. С такими изображениями, обычно, работают промышленные СТЗ, снабженные телекамерами черно-белого монокулярного телевидения. На выходе телекамеры образуется видеосигнал, соответствующий распределению яркости в поле зрения D в дискретные моменты времени, синхронизируемые, например, с интервалом стандартной развертки. На базе значений видеосигнала формируется последовательность отсчетов, которые соответствуют значениям яркости, получаемой усреднением (сверткой) видеосигнала по некоторой окрестности (апертуре) точки (х, у). Максимально возможное число отсчетов при заданной апертуре образует растр поля зрения.
Использование цифровых методов обработки изображений предполагает в качестве необходимого этапа пространственную и яркостную дискретизацию непрерывного изображения В (х, у), т. е. замену координат его элементов дискретными значениями и квантование яркости этих элементов на определенное число уровней. В память вычислителя СТЗ информация об изображении обычно вводится в виде матрицы значений, заданной на целочисленной прямоугольной решетке, покрывающей область поля зрения D.
Входные изображения могут быть подвержены различного рода помехам, которые можно разделить на случайные и локальные. Случайные помехи называют также шумами. Они возникают на изображениях в результате нестабильности и сбоев в работе различных блоков СТЗ на отдельных этапах формирования и преобразования изображений. Шумы, искажают реальное изображение в отдельных, в основном разрозненных, точках области D. Локальные помехи связаны с тем, что в поле зрения видеодатчика имеются некоторые небольшие области, которые не интерпретируются ни как объекты, ни как фон. Это, в первую очередь, загрязнения, блики, сколки, пятна.
Наличие помех заставляет в ряде случаев начать с их подавления – сглаживания шумов и устранения локальных помех. Задача подавления помех входит, с одной стороны, в задачу улучшения изображений, а с другой – ее можно рассматривать как часть задачи сегментации. В задачах, связанных с СТЗ роботов, актуален именно второй аспект.
Конечной целью сегментации изображений является разбиение поля зрения D на области объектов Dі,..., D8 и область фона
. Сегментация путем построения отображения называется методом разметки точек. Если же целью является построение отображения, то говорят о сегментации путем выделения границ.Методы и алгоритмы сегментации можно рассматривать как формализацию понятия выделяемости объекта из фона или понятий, связанных g градиентом яркости. Надежность алгоритмов сегментации зависит от того, насколько точно и полно при этом учтена дополнительная информация, которая в основном состоит из следующих сведений:
- число объектов s;
- некоторые характеристики распределения яркости в областях объектов или фона, например экстремальные значения яркости, количество перепадов яркости;
- оценки яркостного перепада при переходе из области фона в область объектов;
- форма объектов;
- информация о том, какую, часть поля зрения занимает объединение областей объектов.
2.5 Пороговое ограничение
Пороговое ограничение по яркости – один из распространенных методов сегментации в робототехнике. Это обусловлено тем, что изображения объектов манипулирования часто имеют достаточно однородную яркость и резко выделяются из фона.
Наиболее просто пороговая обработка осуществляется в случае, когда заранее известно, что изображение состоит из одного объекта (s = 1) и фона, причем яркость точек объекта находится в пределах [Т1, Т2], а яркость точек фона либо меньше Т1либо больше Т2. В этом случае каждой точке (i, j)
Dсопоставляется метка 1, если В(і, j) [Т1, Т2], и метка 0 в противном случае. Произведенная таким образом грубая сегментация является окончательной вследствие условия s = 1.