Рисунок 3.5 - Топология "звезда" с мультиплексором в качестве концентратора
Г) топология "кольцо" (рисунок 3.6). Эта топология широко используется для построения SDH сетей первых двух уровней SDH-иерархии (155 и 622 Мбит/с).
Рисунок 3.6 - Топология "кольцо"
Основное преимущество этой топологии – лёгкость организации защиты типа 1+1, благодаря наличию в синхронных мультиплексорах SMUX двух пар (основной и резервной) оптических агрегатных выходов (каналов приёма/передачи): восток – запад, дающих возможность формирования двойного кольца со встроенными потоками, и путевой защиты.
Хотя транспортные способности уже первого уровня (155 Мбит/с) СЦИ казалось бы велики для зоновых сетей, однако принципы SDH позволяют эффективно использовать её и здесь. Упомянутая скорость передачи определяет лишь предел пропускной способности линий, которые в сложных сетях могут нести нагрузку от многих станций, обеспечивая сетевое резервирование.
Основными потребительскими потоками в зоновых сетях и сетях доступа являются первичные цифровые тракты 2 Мбит/с, из которых формируются VC-4. При использовании ассинхронного размещения, почти исключительно реализуемого во всей выпускаемой аппаратуре SDH, проблем взаимодействия не возникает, поскольку при этом сеть SDH сохраняет среднюю тактовую частоту первичного цифрового тракта. Сохраняются и возможности построения синхронных сетей коммутации.
Сеть данного проекта содержит 6 станций в районных центрах Кошки, Елховка, Исаклы, Челно-Вершины, Сергиевск, Шентала. Оптимальным вариантом для построения сети является топология "кольцо". Выбранная топология обеспечивает:
- более высокую надёжность;
- наиболее полную реализацию всех возможностей SDH;
- возможность расширения сети.
При использовании данного варианта построения сети расширение последней можно будет произвести различными способами. Так, например, для создания "двунаправленного кольца" потребуется строительство новой трассы между районными центрами Кошки, Елховка, Исаклы, Челно-Вершины, Сергиевск, Шентала, территориально разнесённой с существующей (проектируемой).
Весьма перспективным представляется построение сети SDH в виде нескольких объединённых колец для создания и развития взаимоувязанной сети связи в Самарской области и России в целом.
Так как оборудование SMA-1(фирмы "SIEMENS") не поддерживает режим самолечащегося кольца, то защиту трафика можно организовать только с помощью путевой защиты (рисунок 3.7).
Рисунок 3.7
Путевая защита реализуется путём создания и установления ряда кросс-соединений. Фактически создаётся 2 тракта: рабочий и резервный. Переключение на резервный тракт осуществляется при появлении аварийных сигналов. Например:
- AU-AIS – административная единица – сигнал индикации аварии;
- TU-AIS – трибутарная единица – сигнал индикации аварии;
- SSF – сбой сигнала сервера;
- ExcBER – чрезмерное количество ошибок.
Поскольку основными потребительскими потоками на виртуальных сетях являются первичные цифровые тракты со скоростью 2 Мбит/с, то схема преобразования должна отвечать основному варианту взаимодействия (рекомендация G.709) и реализовывать следующий путь преобразования сигнала 2048 кбит/с.
C-12 / VC-12 / TU-12 / TUG-2 / TUG-3 / VC-4 / AU-4 / AUG / STM-1
Схема преобразования представлена на рисунке 3.8.
Рисунок 3.8 - Схема преобразования сигнала 2 Мбит/с
Маршрутизация потоков осуществляется администратором сети с его рабочего места посредством программного сетевого управления NCT. Процесс маршрутизации осуществляется следующим образом:
- войти в Windows
- необходимо активизировать систему
- набрав пароль и идентифицировав профиль оператора, войти в операционную систему;
- загрузить программное приложение той станции, где будет производится маршрутизация;
- приступить к маршрутизации.
Синхронные мультиплексоры SMA 1,SMA 4 могут синхронизироваться от следующих источников тактовых сигналов:
- максимум 2 потока данных STM-1 или STM-4 (тактовый сигнал Т1);
- максимум 2 потока данных PDH (тактовый сигнал Т2);
- максимум 2 внешних тактовых сигнала (Т3);
- внутренний кварцевый генератор (Т0).
При установке конфигурации (при вводе в эксплуатацию) определяются имеющиеся источники тактовых сигналов, и каждому источнику тактовых сигналов назначается приоритет.
Во время работы выполняется текущий контроль каждого из сконфигурированных источников синхронизации. При отказе источника тактовых сигналов, в данный момент используемого для синхронизации, мультиплексор автоматически переключается на источник тактовых сигналов со следующим приоритетом.
Критерием для переключения источников синхронизации могут служить следующие события:
- LOS (потеря сигнала);
- LOF (потеря цикла);
- AIS (сигнал индикации аварии);
- ТМА (аварийный сигнал маркера синхронизации);
- ExcBER (интенсивность битовых ошибок 10
).Кроме этого синхронный мультиплексор SMA 1, SMA 4 сам может служить источником для передачи синхросигнала. Для этого предусмотрен специальный выход Т4.
Информация о качестве источника синхронизации передаётся в байте S1 заголовка STM-1. В таблице 3.1 показана информация, содержащаяся в байте маркера синхронизации SSM.
Таблица 3.1 - Информация в байте маркера синхронизации SSM
SSM (шестнадцатеричное значение) | Описание значения | Уровень качества |
2h | PRC (G.811) | Q1 |
4h | SRC, транзитный (G.812T) | Q2 |
8h | SRC, локальный (G.812L) | Q3 |
Bh | MTS | Q4 |
Oh | Качество неизвестно | Q5 |
Fh | Для синхронизации не используется | Q6 |
Дадим некоторые пояснения к таблице 3.1:
- PRC – первичный опорный тактовый генератор: при получении SSM со значением 2h каждый сетевой элемент синхронизируется этим опорным генератором с уровнем качества Q1;
- SRC, транзитный – вторичный опорный тактовый генератор: байт маркера синхронизации SSM со значением 4h указывает на использование источника синхронизации, соответственно G.812T ITU-T с уровнем качества Q2;
- SRC, локальный – это опорный тактовый генератор редко используется в сетях SDH. Уровень качества Q3 почти на порядок ниже, чем для транзитного SRC;
- MTC – источник синхросигналов мультиплексора: этот байт маркера синхронизации SSM том случае, если в списке приоритетов отсутствуют другие источники тактовых сигналов;
- Качество неизвестно: этот байт SSM передаётся сетевым элементом на выход STM до тех пор, пока внутренний кварцевый генератор не будет синхронизирован с источников входящих тактовых сигналов. Как только это произойдёт, на все другие выходы SSM передаётся байт маркера синхронизации, который соответствует этому источнику опорных тактовых сигналов;
- Для синхронизации не используется: байт маркера синхронизации со значением равным Fh передаётся автоматически в случае синхронизации SDH-порта в обратном направлении. Таким образом, предотвращается образование шлейфа по синхронизации.
Рисунок 3.10 - Организация синхронизации по линейному порту
На рисунке 3.10 стрелки на сетевых элементах (NE) показывают направление синхронизации: например, источникои синхронизации, используемым сетевым элементом NEn, является линия "запад". Числа внутри сетевых элементов соответствуют приоритетам используемых источников тактовых сигналов. Символы в кружочках указывают значение (шестнадцатеричное) передаваемого байта маркера синхронизации SSM.
Для проектируемой сети организация синхронизации представлена на рисунке 3.11.