Смекни!
smekni.com

Расчет импульсного источника вторичного электропитания (стр. 3 из 9)

Рассмотрим работу демпфирующей цепи (ДЦ на схеме рис. 2). Она состоит из резистора

, конденсатора
и диода
, которые показаны на схеме рис. 4. Необходимость введения этой цепи обусловлена следующими характерными процессами работы силового каскада.

Трансформатор TV обладает индуктивностью рассеяния Ls обмоток. Перед выключением транзистора VTS (в конце интервала времени

) ток его стока был равен
. Этот же ток протекал и через индуктивность Ls. Упрощенная эквивалентная схема интервала времени запирания VTS, то есть размыкания ключа S приведена на рис. 8.

Рис.8. Эквивалентная схема силового каскада на этапе демпфирования импульса напряжения сток-исток.

Здесь полярность напряжения на индуктивности LS, указанная без скобок и соответствующая показанному направлению увеличивающегося тока стока, соответствует открытому (предыдущему) состоянию ключа S (транзистора VTS). После размыкания ключа S увеличение тока стока прекращается и в соответствии с законом самоиндукции полярность напряжения на индуктивности LS меняется на обратную, что показано на схеме рис. 8 знаками в скобках. Если в схеме отсутствует демпфирующая цепь, то в момент времени запирания транзистора на ключе образуется импульс напряжения, амплитуда которого в идеальном случае будет равна бесконечности.

После смены полярности напряжения на индуктивности LS открывается диод VDД и накопленная в ней энергия поглощается конденсатором СД, обеспечивая снижение амплитуды импульса напряжения

на переходе сток-исток транзистора VTS. В зависимости от величины емкости и напряжения
, которое существовало на конденсаторе СД до момента времени размыкания ключа S, амплитуда импульса будет различной. Очевидно, что чем больше емкость СД и меньше напряжение
, тем меньше будет амплитуда импульса напряжения
. С точки зрения повышения надежности работы преобразователя требуется снижение амплитуды этого импульса, однако, это требует определенных энергетических затрат, что снижает КПД ИВЭП.

По окончании процесса разряда индуктивности Ls диод VDД запирается, так как напряжение на обмотке

становится равным
. После этого напряжение сток-исток VTS принимает значение

(1.4)

Так как в последующем напряжение на конденсаторе СД меньше, чем на обмотке

, то он разряжается на резистор RД. Для наиболее эффективной работы демпфирующей цепи величина сопротивления RД должна быть такой, чтобы к концу интервала времени
обеспечивался разряд конденсатора СД до напряжения

1.5 Работа магнитопровода силового трансформатора

Трансформатор силового каскада является специфическим индуктивным элементом, характерные особенности работы которого определяются выбранным типом импульсного преобразователя - ОПНО.

С точки зрения трансформации напряжений и токов из первичной обмотки

во вторичную
трансформатор TV схемы рис. 4 представляется классическим трансформатором, к которому применимы рассматриваемые в курсе ТОЭ формулы приведения.

В классическом трансформаторе тока или напряжения, включая импульсный, индуктивность намагничивания

является паразитной и для повышения энергетической эффективности трансформатора она должна быть максимальной, так как при этом уменьшается бесполезный ток холостого хода.

Магнитопровод трансформатора силового каскада ОПНО работает в режиме однополярного намагничивания, как и импульсный трансформатор. Одновременно с этим, индуктивность его намагничивания должна быть не максимально возможной, а иметь строго определенную величину. Это обусловлено тем, что на этапе включенного состояния транзистора VTS амплитуда импульса тока стока

определяет процессы переноса энергии из первичного источника
в нагрузку и определяет уровень напряжения
.

На рис. 9 приведена график кривой намагничивания

.

Рис. 9. График кривой намагничивания магнитопровода.

Как следует из временных диаграмм рис. 5 и приведенных уравнений, для требуемого функционирования силового каскада ОПНО все изменения токов обмоток

и
трансформатора должны иметь линейный характер, что обеспечивается при
и
. В общем виде индуктивность любой из обмоток трансформатора может быть выражена обобщенной функцией

(1.5)

где

- коэффициент, определяемый геометрическими размерами сердечника магнитопровода;
- магнитная проницаемость материала сердечника, геометрическая интерпретация величины которой показана на графике рис. 9.

При изменении тока, протекающего через индуктивность, рабочая точка перемещается по кривой намагничивания, рис. 9, в направлениях, показанных стрелками. Так как трансформатор TV работает в режиме однополярного намагничивания, то рабочей областью функции

является первый квадрант графика рис. 9. Для выполнения условия неизменности индуктивности L необходимо, чтобы рабочая точка при изменении магнитного поля Н, которое соответствует подмагничивающим ампервиткам
, не выходила бы за пределы линейного участка функции
. Это соответствует показанной на графике величине индукции
. Только в этом случае обеспечивается равенство
. Одновременно с этим график рис. 9 показывает, что если ампервитки
, то действующая индукция будет равна Внас (индукции насыщения сердечника), обусловливая значение
, а это, в соответствии определяет значение
.

Изложенное определяет необходимость применения в трансформаторе силового каскада ОПНО специальных магнитопроводов и выбора определенных режимов работы, которые существенно отличаются от традиционных, используемых при проектировании классических трансформаторов тока или напряжения. По существу процессов трансформатор силового каскада ОПНО является многообмоточным сглаживающим дросселем. Поэтому в таких трансформаторах используются сердечники с воздушным зазором или специальные магнитодиэлектрики с малой магнитной проницаемостью:

.

1.6 Работа схемы сравнения

Как видно из схемы рис. 4, напряжение вторичной обмотки

, выпрямленное диодом
через сглаживающий фильтр
поступает в нагрузку
. Одновременно с этим напряжение с конденсатора
поступает на вход аналоговой схемы сравнения
. Функционально она представляет собой операционный усилитель, на один из входов которого поступает опорное напряжение, а на другой напряжение с выхода делителя напряжения
. К выходу
подключен светодиод первой части оптоэлектронной пары "светодиод-фототранзистор" микросхемы
устройства гальванической развязки. Работа схемы сравнения с оптоэлектронной парой заключается в том, что при изменении выходного напряжения ИВЭП изменяется яркость свечения светодиода, что приводит к изменению светового потока, передаваемого на последующие функциональные узлы ИВЭП.