Смекни!
smekni.com

Методы и средства обработки аналоговых сигналов (стр. 3 из 8)

Здесь m - число датчиков в системе, foi- частота опроса i-го датчика (получены на этапе информационного расчета).

Вводится понятие потенциальной нагрузочной характеристики (ПНХ). Она характеризует уменьшение потенциальных возможностей системы, при увеличении расходов на диспетчеризацию. Расход на диспетчеризацию тем больше, чем чаще появляются запросы на запуск прикладных задач. В общем виде ПНХ может быть представлена следующим образом:

rn(C)=1-rд(C)

Здесь rд(C) - приведенные затраты процессорного времени на диспетчеризацию.

rд(С)=1-rп(С)

0£rn(C)£1

Конкретный вид ПНХ определяется выбранной операционной системой (ОС). Операционная система выбирается в соответствии с запросами системы и с учетом критерия минимизации стоимости системы. Наиболее быстродействующей является 3-я ОС.

Рис. 8


Каждому рабочему режиму АСНИ на плоскости нагрузочной характеристики соответствует рабочая точка (РТ) с координатами: Cрт и rрт.

rртрт(tусд+tинт+tпо)

tусд - задержка вносимая УСД.

Здесь Сусд - максимальная скорость преобразования, выбирается из [1] пункт 6.2.3 таблица 2.

tинт - задержка вносимая интерфейсом при обмене данными между ЭВМ и УСД, выбирается из П1 пункт 6.2.4 таблица 4.

tпо - затраты процессорного времени не связанные с обменом (подготовительные операции, первичная обработка).

При выборе ОС значения t1 и t2, а также tпо даны для 3-ей ЭВМ. Для их пересчета на выбранный вариант ЭВМ используются формулы:

Здесь

,
,
- значения для выбранной ЭВМ;

,
,
- значения для 3-ей ЭВМ;

,
,
,
- индивидуальные коэффициенты производительности.

Для выполнения ограничений на верность восстановления сигнала необходимо, чтобы на этапе сбора данных частоты опроса датчиков были равномерными и лежали в заданных пределах:

fi ³ foi

Здесь foi - частота опроса i-го датчика при выбранной разрядности АЦП (nацп), полученные на этапе информационного расчета; fi - реальная частота опроса i-го датчика. fi может быть больше foi для выбранной разрядности АЦП, но не меньше, так как в этом случае не будет обеспечено восстановление сигнала с заданной точностью.

Варьируя значением fi мы перемещаем РТ по плоскости ПНХ (по координате Срт), тем самым выбирая выгодное для нас положение РТ, при котором обеспечивается восстановление сигнала с заданной точностью и минимальная стоимость используемого оборудования. Изменение стоимости происходит за счет выбора различных устройств (движение по координате rрт).

При выборе fi и устройств необходимо обеспечить выполнение условия:

rnрт) ³ rртрт)+R0 или

R0³ rnрт)-rртрт)

Здесь R0 - допустимый резерв загрузки ЭВМ в РТ заданный в техническом задании. Для удобства обозначим:

=f0

Последовательность запуска прикладных задач формируется по циклограмме, которая представляет собой список номеров задач, расположенных в нужной последовательности. В начале каждого такта диспетчер по сигналу от таймера считывает очередной элемент циклограммы и запускает соответствующую задачу. По окончании циклограммы происходит возврат к ее начальному элементу. В циклограмме могут быть не заполненные такты. Это означает, что в соответствующем такте временной диаграммы выполняется фоновая работа (например, завершение ранее прерванных задач).

Если пронумеровать все такты временной диаграммы элементами натурального ряда чисел , то последовательность номеров тактов, в которых вызывается i-ая задача, можно рассматривать как класс вычетов j i по модулю r i. Здесь ji (начальная фаза) - номер такта временной диаграммы, в котором i-ая задача вызывается в первый раз; ri (тактовое расстояние) - расстояние между соседними моментами запуска i-ой задачи, выраженное в тактах временной диаграммы. ri и ji - целые числа. Тогда частоты запуска задач:

f i = f0 / r i

Рис. 9


Выбор параметров временной диаграммы f0, j=[j1,j2,...,jm], r=[r1,r2,...,rm], где m - число датчиков в системе, следует проводить по критерию минимума суммарной загрузки процессора. Чем меньше загрузка процессора, тем менее производительный процессор можно использовать в АСНИ, а следовательно снизить ее стоимость. Для поиска минимальной загрузки процессора необходимо решить следующую задачу:

При следующих ограничивающих условиях:

ri £ f0/foi - ограничение на погрешность восстановления, вытекающее из требования fi ³ foi и fi=f0/ri; ji(mod ri)¹jj(mod rj) - требование, согласно которому в каждом такте временной диаграммы должно начинаться выполнение не более одной задачи;

н.о.к (r1,r2,r3,...,rm)£N0 - ограничение на длину циклограммы, накладываемое оперативной памятью (н.о.к - наименьшее общее кратное).

На этапе предпроектного анализа целесообразно использовать следующий подход к выбору параметров временной диаграммы. Примем тактовое расстояние ri равным ближайшей к f0/foi степени числа 2, меньшей f0/foi, т.е. ri=[f0/foi]2=2a. При этом задача сведется к нахождению величины f0, минимизирующей суммарную загрузку процессора

rS(f0)=rрт(f0)+rд(f0)

при следующем ограничении:

Здесь Кз.ц. - коэффициент загрузки циклограммы, характеризует долю ненулевых элементов в циклограмме, М - число датчиков в системе.

Функция rS(f0) имеет пилообразный характер, причем, локальные минимумы наблюдаются в “особых” точках, имеющих следующие значения:

S(k,i) = foi × 2k,

i=1,2,...,m k=1,2,....

Значение частоты f0, обращающее rS в минимум, лежит на интервале [C0, 2C0] в одной из особых точек. Напомним, что:

Ограничивающее условие Кз.ц. можно записать в следующем виде:

Здесь K - число групп датчиков, Мj - число датчиков в j-ой группе, (2к)j - тактовое расстояние кратное степени числа 2 для j-ой группы.

Алгоритм определения параметров временной диаграммы состоит из следующих этапов:

ЭТАП 1

Вычисление области поиска рабочей частоты циклограммы f0: [C0, 2С0] – значения тактовой частоты циклограммы из указанного интервала должны выбираться по возможности наименьшими, что снизит требования на быстродействие КТС.

РАСЧЕТ:

C0 = 9∙44.94288+2∙611.45+5∙13.26425+11∙3.415579=1731.291

Область поиска рабочей частоты циклограммы: [1731.291; 3462.583]

ЭТАП 2

Значения тактовой частоты циклограммы из найденного интервала могут определяться, например, наличием генератора стабильной частоты, но предпочтительнее их выбирать из тех, которые обеспечивают более близкое к 1 значение

.

Выбор предпочтительных частот:

С0 £ foi×2a £ 2C0

Для каждой группы датчиков вычисляется:

Сj = fj × 2a

Здесь fj - частота опроса foi любого датчика j-ой группы.

РАСЧЕТ:

C1 = 44.94288×26 = 2876.34432

[1731.291; 3462.583]

C2 = 611.45×22 = 2445.8

[1731.291; 3462.583]

C3 = 13.26425×28 = 3395.6

[1731.291; 3462.583]

C4 = 3.415579×29 = 1748.786688

[1731.291; 3462.583]

ЭТАП 3

Из рассчитанных для каждой группы Сj выбирается наименьшая Сjи проверяется в качестве тактовой частоты циклограммы - f0. Вычисляются тактовые расстояния для каждой группы датчиков - значения (2к)j=[f0/foi]2.

По условию построения равномерной адаптивной циклограммы тактовые расстояния в нашем случае выбираются кратными степени двойки, что может иметь то преимущество, что в качестве задатчика циклограммы можно использовать двоичный счетчик. Если для выбранной частоты циклограмма может быть построена - удовлетворяется условие Кз.ц. £ 1, то f0 считается допустимой и квазиоптимальной для всех особых точек rS(f0). В противном случае она отбрасывается и этап 3 повторяется для других по порядку возрастания Сj . При таком подходе полученная f0 является минимальной из возможных, где загрузка процессора также минимальна.