Смекни!
smekni.com

Расчёт супергетеродинного приёмника ДВ, СВ волн (стр. 4 из 6)

Кн’=(1.4ч2)*Кн

Для ДВ:

dэп=1/Qэк=1/10,89=0,091

dкон=1/Qкон=1/90=0,011

Rвх=1/(0,8*g11э) = 1/(0,8*0,001)=1250Ом=1,25кОм

ρmax=159/(fcmax[МГц]*(Скмин+Ссх) [пФ])=159/0,408*(11,9+30)=2,3 кОм

m2= (dэп-dкон)*(Rвх/ρmax)= (0,091 -0,011)*(1,25/2,3)=0,043

Umвх=Е*hд*Qэ*m2=0,003*0,03*10,89*0,043=47,6мкВ

Кн=Uвхd/1.41*Uвх=0,6 /1,41*0,0000476=8939раз

Определяем коэффициент усиления с запасом на 40%:

Кн’=1,4*8939≈12520раз

Для СВ:

dэп=1/Qэк=1/31,9=0,031

dкон=1/Qкон=1/140=0,007

Rвх=1/(0,8*g11э) = 1/(0,8*0,001)=1250Ом=1,25кОм

ρmax=159/(fcmax[МГц]*(Скмин+Ссх) [пФ])=159/1,605 *(10+30)=2,47 кОм

m2= (dэп-dкон)*(Rвх/ρmax)= (0,031-0,007)*(1,25/2,47)=0,012

Umвх=Е*hд*Qэ*m2=0,003*0,04*31,9*0,012=45,93мкВ≈46мкВ

Кн=Uвхd/1.41*Uвх=0.6 /1.41*0,000045936=9263раз

Определяем коэффициент усиления с запасом на 40%:

Кн.’=1.4*9263≈13000раз

Определение числа и типов усилительных каскадов до детектра:

Так как УРЧ отсутствует, то рассчитываем коэффициент усиления Ку. Для начала выберем 2 каскада УПЧ, nпр=3;

для УПЧ:

Ку=6,3* S/f*Ck =6.3* 34/0.465*2,8=32,1

для ПЧ:

Кпр=6,3* Sc/Fc*Ck=6.3* 26/1.605*2,8=15раз

Определяю общий коэффициент усиления Кобщ

Кобщ=Кпр*Купч^(nпр-1)=8*15,96^3-1=15*32,1І=15456

Так как Кобщ>Кн’ для ДВ и Для СВ то хватет 2 каскадов УПЧ

Первый каскад УПЧ будет апериодический, а второй широкополосный.

Выбор схемы АРУ и числа регулируемых каскадов:

Выбираю схему АРУ с задержкой, работающую на принципе изменения эмиттерного тока за счёт подачи регулирующего напряжения в цепь базы транзистора.

Рассчитываем необходимые пределы изменения коэффициента усиления регулируемых каскадов по формуле:

nн=Д-В, где:

Д-заданное изменение сигнала на входе приёмника, дб

В- заданное изменение сигнала на выходе приёмника, дб

nн=25-6=19дб

Считая что регулируемые каскады идентичны, определяют необходимое количество регулируемых каскадов по формуле:

NАРУ=nн/20*lgn, где n-изменение коэффициента усиления одного регулируемого каскада

Зададимся n=10, тогда:

NАРУ=19/20*lg10=0.95»1

В соответствии с рекомендациями по выбору схемы АРУ в качестве регулируемого каскада используем первый каскад УПЧ по апериодической схеме.

1.2.12.Эскизный расчёт тракта низкой частоты:

Выбор типа электродинамического громкоговорителя:

Исходными данными, необходимыми для выбора динамического громкоговорителя, являются:

1. номинальная выходная мощность: Рвых=0,15Вт

2. полоса воспроизводимых частот: Fн=300ГцчFв=3500Гц

3. неравномерность частотной характеристики:

4. среднее звуковое давление при заданной номинальной мощности:

Применяемые в транзисторных переносных приёмниках электродинамические громкоговорители должны иметь маленькие размеры. Исходя, из этих соображений я выбираю громкоговоритель типа: 0,2ГД-1, с параметрами:

Таблица№11:

тип Pном, Вт Диап. F(Гц) Среднее Звуковое Давление Полное Сопротивление Звуковой катушки, Ом Габариты мм Вес, гр
н/мІ бар
0,2ГД-1 0,200 300 10000 0,18 1,8 6±0,6 60*25 50

Выбор типа схемы и транзисторов для выходного каскада:

В качестве оконечных каскадов усилителей низкой частоты можно использовать как однотактные, так и двухтактные схемы. Схема выходного каскада определяется назначением усилителя и требованиями, предъявляемыми, к нему. Так как у моего усилителя Рвых=0,150Вт, то я выбираю двухтактный каскад в режиме класса АВ на маломощных транзисторах.

Выбор транзисторов производится, исходя из следующих соображений:

1. предельно допустимая мощность рассеяния на один транзистор Ркмакс должна превышать рассеиваемую на коллекторе мощность Рк, которую можно вычислить по формуле:

Рк=0,4*Рн’/ ηунч *ξ², где

Рн’=Рн/2-номинальная мощность, заданная по условию, приходящаяся на один транзистор.

Рк-мощность рассеиваемая на коллекторе транзистора.

ηунч-КПД выходного каскада =1

ξ-коэффициент использования коллекторного напряжения=0,8ч0,95; выбираю 0,9

Рн’=0,150/2=0,075Вт=75мВт

Рк=0,4*0,075/1*0,9І=0,037Вт≈37мВт

Выбираю транзистор: КТ315А, у которого Ркмакс=150мВт; Екмакс=25В

2. Проверяю выполнение условия:

Ек≤(0,3ч0,4)Екмакс

6В≤(0,3ч0,4)*25=7,5ч10

Условие выполняется, следовательно, транзистор выбран правильно.

Выбор транзисторов для каскадов УННЧ:

В большинстве случаев каскады УННЧ могут быть выполнены на маломощных транзисторах. При этом, если усиливаемые частоты не превышают единиц килогерц, выбор транзисторов производится по низкочастотным параметрам из следующих соображений:

1. минимальной стоимости;

2. наибольшей величины коэффициента усиления (В) в схеме с общим эмиттером.

Выбираю транзистор КТ315Б т.к. он дешевый и имеет большёй коэффициент усиления.

Таблица№12:

Тип Тракт Ikmax,ma Pkmax, mBt Ukэ, В fгр h21э
КТ315А УНЧ 100 150 25 100 20ч90
КТ315Б УННЧ 100 150 20 100 50ч350

1.2.13.Обоснование структурной схемы приёмника по результатам эскизного расчёта.

На основании проведённого мной эскизного расчёта приёмника я составляю его блок-схему с указанием числа каскадов и особенностей каждого тракта.

В этой схеме входная цепь приёмника с магнитной антенной содержит два поддиапазона: поддиапазон километровых волн (ДВ) и поддиапазон гектометровых волн (СВ). Связь контура входной цепи с транзистором преобразователя частоты трансформаторная. Преобразователь частоты (ПЧ) собран по схеме с отдельным гетеродином. Нагрузкой в цепи коллектора служит 4 звена ФСС ПФ1П-2, связь ФСС с выходом смесителя и входом УПЧ индуктивная. Первый каскад УПЧ собран по апериодической схеме, второй широкополосный, одноконтурный с частичным включением контура в цепь коллектора. Диодный детектор собран по последовательной схеме с разделённой нагрузкой. Для автоматической регулировки усиления используется схема АРУ с задержкой включенная в цепь эмиттера УПЧ собранного по апериодической схеме. Каскад УННЧ собран по резистивной схеме с непосредственным включением нагрузки, каскад УНЧ выполнен по безтрансформаторной схеме на одиночной паре комплементарных транзисторов.

1.3 Расчётная часть проекта:

1.3.1 Подробный расчёт каскада АД:

Требования, предъявляемые к АД, сводятся к обеспечению следующих качественных показателей:

· возможно большего коэффициента передачи, который определяется отношением напряжения НЧ на выходе детектора к напряжению ВЧ на его входе;

· возможно меньших частотных и нелинейных искажений;

· возможно большего входного напряжения;

· возможно меньшего ВЧ напряжения на его выходе.

Расчёт детектора сводится к выбору схемы и ее элементов так, чтобы перечисленные требования удовлетворялись наилучшим образом.

Выбираю последовательный полу проводниковый детектор с разделённой нагрузкой, так как он удовлетворяет всем моим заданным требованиям, и обеспечивает регулировку уровня сигнала.

1. Диоды рекомендуется выбирать исходя из условия:

Rобр>>Rн>>Rпр

Выбираю диод Д9Б, так как у него Rобр>>Rпр.

Определяю сопротивление нагрузки детектора:

Rн=2*Кд*Rвх, где Кд - коэффициент передачи детектора, так как Uвх.д=0,6В, то Кд=0,2ч0,4 выбираю Кд=0,4.

Rвх- входное сопротивление детектора 4,6кОм

Rн=2*Кд*Rвх=2*0,4*4,6=3,68кОм.

2. Так как сопротивление нагрузки детектора одного порядка с входным сопротивлением УНЧ, величины сопротивлений R1 и R2 определяю по номограмме 9.18 в учебнике В.Д. Екимова.

Получаю R2=1,6кОм.

Принимаю R2=1.5 кОм из ряда Е6, типа СП3-10М с выключателем.

Определяю R1=Rн-R2=3,68-1,5=2,18кОм.

Принимаю R1=2,2кОм из ряда Е6, типа МЛТ-0,25.

3. Определяю общее сопротивление нагрузки переменному току: