Испытания объекта, проведенные для контроля его качества, называются контрольными испытаниями. К числу контрольных относятся, например, испытания материала на прочность с определением его механических характеристик и сопоставлением их с технической документацией.
При массовом производстве сплошной контроль в ряде случаев обнаруживается экономически нецелесообразным и приходится прибегать к выборочному контролю.
Эффективность выборочного контроля обуславливается использованием при его осуществимые системы проверок, основанной на математико-статистических методах. Такие методы разрешают выносить правильный вывод о качестве больших массивов продукции по результатам проверки ограниченного количества его единиц. Это дает возможность значительно сократить трудоемкость и продолжительность контрольных операций, то есть понизить величину Ттк.
Математико-статистические и вироятные методы технического контроля делятся на статистический анализ точности технологического процесса; статистическое регулирование технологического процесса; статистический приемочный контроль качества продукции.
Статистический анализ точности технологического процесса вырабатывается с целью определения возможностей обеспечить изготовление продукции стабильного уровня качества. Он осуществляется путем определения параметров выполняемой технологической операции (или группы таких операций) с следующей обработкой результатов наблюдений и оценкой показателей точности технологического оборудования.
Статистическое регулирование технологического процесса осуществляется путем выборочного контроля изготовленной продукции с целью обеспечения необходимого уровня ее качества и предупреждение брака. При этом систематически ведутся контрольные карты, которые разрешают в любой момент оценить состояние технологического процесса, который обуславливает значение того или другого параметра продукции, а в случае выхода этого процесса за границы регулирования, сделать его корректирования.
2.3 Основные требования к автоматизированным средствам измерения и контроля качества продукции
К современным автоматическим средствам измерения подаются высокие метрологические и эксплуатационные требования.
В первую очередь средства измерения должны обеспечить высокую производительность измерений, не снижая производительность технологической обработки деталей. В последние года созданные средства, которые обеспечивают производительность 20 000-40 000 деталей в время.
Средства измерений и контроля должны иметь оптимальную точность. Известные средства, в которых соответственно требованиям производства, погрешность измерения должна составлять 0,05-0,1 мкм. Тем не менее повышение точности должно быть оправданно экономическими показателями так как с повышением точности измерений значительно увеличивается стоимость изготовления средств измерений, их эксплуатации.
Исключительно важным требованием есть обеспечение профилактики брака. В связи с этим средства измерений должны формировать информацию для влияния на технологические процессы по результатам измерений и контроля. Поэтому измерения необходимо делать как можно ближе к тому месту, где появляется погрешность изготовления деталей. .
Местоположение средства измерений и выбор размеров, которые измеряются, обуславливаются требованиями производства и тесно связанные с технологическим процессом. Во всех случаях нужно стремиться к уменьшению объема измерений, обеспечивая стабильность технологического процесса. Прежде всего необходимо измерять или контролировать те параметры и размеры, которые неустойчивые, делают решающее влияние на функционирование объекта измерений, по результатам измерения которых можно влиять на качество изготовления деталей.
В современных средствах измерений должны предполагаться возможности сочленения их с микропроцессорами, ЭВМ, АСУ, печатными машинами, дисплеями и пишущими приборами, а также возможность применения средств измерений в гибком автоматическом производстве. Поэтому они должны иметь аналоговый выход и выход в коде, владеть оперативной переналадкой диапазона измерений, цены или дискретность отсчета и алгоритма работы, а также иметь регулированные и сменные устройства для быстрой переналадки при переходе на другой тип детали, то есть средства измерений должны быть гибкими.
Гибкость - одно из самых сложных и противоречивых понятий в общей концепции гибкого производства. Степень гибкости можно определить разнообразием деталей, которые измеряются, а также числом задач, решаемых средством; производительностью настраивания и переналадка при переходе на другой типоразмер детали; возможностью подключения средства к разнообразным интерфейсным устройствам.
Для обеспечения лучшего собирания соединенных деталей измерение размеров этих деталей должно делать с учетом отклонений формы поверхностей, которые соединяются.
Каждая характеристика средств измерений должна воссоздавать определенное физическое свойство и быть проверяемой с минимальными затратами. Необходимо помнить, что завышение характеристик вводит в непроизводительные расходы, а занижение метрологических характеристик - к увеличению фактического брака. Характеристики должны быть стабильными в времени и минимально изменяться под влиянием величин, которые влияют и приводят в негодование. С помощью микропроцессорной техники возможно уменьшить влияние факторов, которые приводят в негодование, и систематических погрешностей, а также исключить грубые погрешности.
Для обеспечения заданных метрологических характеристик средства измерений должны эксплуатироваться при условиях (температурном режиме, равные вибраций и т.д.), обсужденных в паспорте.
При конструировании средств измерений должны быть обеспечены: удобство, и простота настройки, переналадка, регулирование и обслуживание; доступность использования регулировочных и сменных элементов; удобство установки (загрузка) и снятие (разгрузка) деталей, которые измеряются, а также высокая надежность работы .
2.4 Разработка общей структуры автоматизированной системы измерения
2.4.1 Микроконтроллер семейства MCS-96, как основа организации автоматического расчета параметров объекту измерения
В семейство MCS-96 фирмы Intel (иногда будет использоваться и название 80C196) входит более 30 разновидностей микроконтроллеров. Это 16-разрядные, быстродействующие ИС высокой степени интеграции, ориентированные на решение задач управления процессами в реальном масштабе времени. Типичные области применения для этих микроконтроллеров - управление двигателями, модемы, безюзовые тормозные системы, контроллеры жестких дисков, медицинское оборудование.
История MCS-96 насчитывает более 12 лет. За это время специалисты фирмы Intel увеличили адресное пространство с 64 КБайт до 6 Мбайт, повысили тактовую частоту с 10 до 50 МГц, улучшили быстродействие в 16 раз и добились понижения цены на базовый кристалл* примерно в 4 раза. Микроконтроллеры 80C196 фактически стали индустриальным стандартом для 16-разрядных встроенных систем управления, обеспечивая сочетание высоких технических показателей и экономической эффективности. Например, именно благодаря этим микроконтроллерам, установленным в системе управления зажиганием, специалистам концерна Ford удалось существенно снизить потребление топлива, уменьшить выбросы вредных веществ и одновременно повысить скоростные характеристики своих машин.
Более семи лет мы занимаемся инструментальными средствами для 80C196 и консультациями по вопросам разработки устройств на их базе. И за это время мы убедились, что 80C196 можно с успехом использовать и для 8-разрядных задач, и для задач, требующих низкого энергопотребления, но, как правило, разработчики контроллеров предпочитают использовать уже хорошо известные микросхемы (обычно, это 8051). При этом они зачастую руководствуются не совсем верной информацией о 80C196. Например, высокое быстродействие, свойственное 80C196, связывается с высоким энергопотреблением, но это, не всегда так.
С одной стороны, использование хорошо знакомых микросхем при разработке новых изделий - это проявление рационального, инженерного мышления. Такой подход позволяет быстро и с небольшими затратами создавать различные варианты контроллеров, пригодные для решения однотипных задач. Но с другой стороны, каждый разработчик должен понимать, что требования к системам управления непрерывно растут, и обязательно настанет момент, когда нужно будет отказаться от устаревшего микроконтроллера и применить более современный.
Такой переход психологически труден, особенно для разработчиков аппаратуры, которые отличаются определенной консервативностью. Было время, когда считалось, что и на 8048 можно сделать практически все, что нужно, и часто с ходу отвергалась новая в то время архитектура 8051. В то время многие предпочитали "накручивать" аппаратуру вокруг 8048, вместо того, чтобы воспользоваться тем, что уже находится внутри кристалла 8051.
Микроконтроллеры 80C196 могут рассматриваться как расширение архитектуры 8051, но лишь весьма приближенно. Часто удивляет, когда приходится сталкиваюсь с мнением, что "80C196 - это усовершенствованный 8051". Кристаллы 80C196 имеют другую - и намного более удобную - систему команд, другую организацию памяти, другую систему прерываний. Если быть кратким, то это просто иная, причем более современная архитектура, чем 8051.
80C196 напоминает швейцарский нож - он содержит практически все, что может понадобиться при разработке контроллера. Судите сами: АЦП, устройства ввода и вывода импульсных сигналов, несколько таймеров, ШИМ-генераторы, большое количество обычных портов ввода-вывода, гибкая система прерываний, сторожевой таймер - вот неполный список основных компонентов базовой архитектуры MCS-96. Единожды разобравшись в архитектуре MCS-96, инженер получает в свое распоряжение семейство кристаллов, которые с успехом решают сегодняшние задачи, и вполне пригодны для решения более сложных задач будущего.