Описание устройства
Техническое задание
Исходные данные
Анализ частотных характеристик идеального дифференцирующего устройства
Проверка возможности применения для целей дифференцирования сигнала простейшей дифференцирующей rc-цепочки
Выбор необходимых параметров rc-цепочки, согласно критериям технического задания
Расчет в общем виде АЧХ и ФЧХ скорректированного дифференцирующего устройства (r-L-c цепи). Расчет параметров r-L-c цепи согласно требованиям технического задания
Вычисление АЧХ и ФЧХ r-L-c цепочки с учётом всех выбранных параметров
Общий вывод
Описание устройства
Блок-схема рассматриваемого устройства представлена на рис.1. Здесь u1(t) -некоторый входной сигнал (сигнал управления), ДУ - дифференцирующее устройство, формирующее сигнал по производной
,где т = const, ∑ - сумматор, u3(t) - выходной сигнал, в котором соотношение составляющих u1(t) и u2(t)можно регулировать.
Рис.1 Блок-схема устройства формирования управляющих сигналов
Входной сигнал u1(t) используется в качестве сигнала управления в некоторой системе автоматического регулирования. С целью достижения более высокого качества управления (например, для увеличения запаса устойчивости системы), кроме сигнала u1(t) должен использоваться также сигнал по производной u2(t), где m- постоянный масштабный коэффициент (как правило, т<<1).Сигнал управления и сигнал по производной суммируется на входе соответствующего суммирующего устройства.
Входной сигнал имеет вид:
u1(t)=U(1)m∙sin(ωt+ψ(1))+ U(2)m∙sin(kωt+ψ(2))+ U(q)m∙sin(qωt+ψ(q)).
Две первые низкочастотные составляющие (1<к<<q)являются полезным сигналом управления, высокочастотная составляющая с частотой qω - помеха. Такие высокочастотные составляющие характерны, например, для сигнала, полученного в результате демодуляции после передачи его по линии связи на несущей частоте. В этом случае полезный сигнал передается как огибающая сигнала на несущей частоте. На рис.2 огибающая показана пунктиром. Она может быть выделена в результате демодуляции, а высокочастотная составляющая подавлена, однако, как правило, не до конца (рис.3). При этом уровень помехи невелик и является для полезного сигнала допустимым.
Рис.2, 3 - Сигнал управления на несущей частоте и сигнал управлении после демодуляции
Конечной целью данной курсовой работы является формирование сигнала по производной
с помощью некоторого дифференцирующего устройства с приемлемым качеством дифференцирования и уровнем высокочастотной помехи.Техническое задание
1. Проанализировать, какими частотными характеристиками должно обладать идеальное дифференцирующее устройство, способное дифференцировать сигнал с неограниченным спектром частот. Установить, от чего зависит уровень выходного сигнала такого дифференцирующего устройства.
2. Проверить возможность применения для целей дифференцирования сигнала простейшей дифференцирующей r-сцепочки (рис.4)
Рис.4 Дифференцирующая r-c цепочка
Так как суммирование u1(t) и
происходит на высокоомных входах сумматора, можно считать, что r-сцепочка используется в режиме холостого хода на ее выходе. Не задавая конкретных значений rи с, вывести в общем виде амплитудно-частотную (АЧХ) и фазо-частотную (ФЧХ) характеристики рассматриваемой r-сцепочки, сравнить их с АЧХ и ФЧХ идеального дифференцирующего устройства и сделать вывод о принципиальной возможности проведения с ее помощью операции дифференцирования сигнала u1(t) в интересующем нас диапазоне частот от ω до kω.3. В случае положительного результата по п.2 выбрать параметры r-c-цепочки, исходя из выбранных критериев качества работы устройства. Определить и построить АЧХ и ФЧХ устройства. С их помощью определить выходное напряжение u2(t) дифференцирующего устройства и построить график u2(t).Проанализировать полученный результат с точки зрения следующих критериев:
а) достаточен ли уровень полезного сигнала для его дальнейшего использования в системе автоматического регулирования?
б) достаточна ли точность дифференцирования?
в) достаточно ли низок уровень высокочастотной помехи по сравнению с уровнем полезного выходного сигнала?
Если хотя бы с точки зрения одного из этих критериев работу дифференцирующего звена нельзя признать удовлетворительной, наметить меры по устранению обнаруженного недостатка. Выяснить при этом, не приведут ли намеченные меры к ухудшению качества по другим критериям. Оформить результаты анализа в виде предварительных выводов. Если достижение нужного качества при использовании заданной простейшей схемы дифференцирующего устройства затруднительно или невозможно, продумать и предложить улучшенный вариант (варианты) схемы, которая должна при этом оставаться пассивной. Улучшение должно состоять в том, что отмеченный недостаток в работе простейшей схемы должен устраняться, но не за счет ухудшения других необходимых качеств.
4. Вывести (в общем виде) выражения для АЧХ и ФЧХ новой, скорректированной схемы устройства. Произвести выбор тех параметров схемы, которые в данном случае могут быть признаны неизменяемыми. Если в схеме используется индуктивность, которая не может быть реализована в виде стандартного элемента, выпускаемого промышленностью, определить конструктивные параметры катушки (число витков, сечение провода), обладающей приемлемым значением индуктивности, используя для этой цели кольцевой магнитопровод, выполненный из феррита с относительной магнитной проницаемостью μr, с размерами, указанными на рис.5.
Рис. 5. Линейные размеры кольцевого магнитопровода
Активное сопротивление обмотки должно быть рассчитано и включено в схему замещения дифференцирующего устройства.
Определить алгоритм выбора изменяемого параметра (параметров) устройства, удовлетворяющего выбранным критериям качества (приемлемый уровень выходного сигнала при достаточной точности дифференцирования и низком уровне помех). Определить величину изменяемого параметра (параметров) схемы.
5. Построить графики АЧХ и ФЧХ дифференцирующего устройства с учетом выбранных величин ее параметров, определить с их помощью выходное напряжение
. Проанализировать качество дифференцирования, построив и сравнив графики идеальной производной (где u1(t)) -полезный входной сигнал без учета помехи) и выходного сигнала u2(t), оценив степень их совпадения. Коэффициент т следует выбрать так, чтобы оба напряжения были соизмеримы по уровню.Оформить этот анализ в виде окончательных выводов.
Исходные данные
Таблица 1 - Исходные данные
Вар. | Входной сигнал u1(t), B |
6 |
Таблица 2 - Данные
Вар. | d1, мм | d2, мм | h, мм | μr | dпр, мм | ||
6 | 14 | 22 | 4 | 1400 | 0,2 | 1,85 | 0,042 |
Анализ частотных характеристик идеального дифференцирующего устройства
Амплитудно- и фазо-частотные характеристики идеального дифференцирующего устройства
Рис. 6 и 7 - АЧХ идеального дифференцирующего устройства (отношение модулей амплитудвходного и выходного) | ФЧХ идеального дифференцирующего устройства (разность начальных фаз напряжений входного и выходного сигнала ) |
Идеальное дифференцирующее устройство – это устройство, способное осуществлять операцию дифференцирования в любом диапазоне частот спектра входного сигнала, причём с абсолютной точностью. Технически идеальной считается операция, когда входное u1(t) и выходное
напряжения идеального дифференцирующего звена связаны соотношением: ,где m=const – некоторый произвольный коэффициент пропорциональности (обычно m<<1). При этом уровень помехи выходного сигнала должен быть приемлемо низким.
Входной сигнал как синусоидальная функция в общем виде, и в комплексную форме.
Выходной сигнал как синусоидальная функция в общем виде, и в комплексную форме.