Отрезки, перпендикулярные оптической оси считаются положительными, если они располагаются над осью (рис.4).
Рисунок 4 – Правила знаков
На чертежах и рисунках всегда указывают знак отрезков и углов. При оптических расчетах считается, что после каждой отражающей поверхности показатель преломления, осевое расстояние и угол отражения меняют знак на противоположный.
Луч может пройти одну и ту же поверхность несколько раз, поэтому физическое и расчетное число поверхностей может различаться. Например, на рис.5.5 показаны 8 физических и 12 расчетных поверхностей.
Рисунок 5 – Физические и расчетные поверхности
По составу оптические системы делятся на:
- линзовые (нет зеркал, кроме плоских для излома оптической оси),
- зеркальные,
- зеркально-линзовые.
При анализе оптической системы используются понятия меридиональной и сагиттальной плоскости. Меридиональная плоскость – это плоскость, проходящая через оптическую ось (например плоскость рисунка 5).
Сагиттальная плоскость – это плоскость, содержащая луч и перпендикулярная меридиональной плоскости (может быть ломаной и рассматривается по частям). Ее название произошло от слова “сагитта” (лат.) – стрела. Примером такой плоскости может служить воображаемая ломаная плоскость, содержащая луч на рис. 5.5 и перпендикулярная плоскости этого рисунка.
Оптические системы в основном предназначены для формирования изображения (изображающие оптические системы). Для таких систем вводится понятие предмета и изображения. Для оптических систем, не строящих изображение, понятие предмета и изображения вводится условно.
В геометрической оптике предмет – это совокупность точек, из которых выходят лучи, попадающие в оптическую систему.
Из каждой точки предмета выходит гомоцентрический пучок лучей. Вся возможная совокупность точек (от +∞ до -∞) образует пространство предметов. Пространство предметов может быть действительным или мнимым.
Оптическая система делит все пространство на две части:
- пространство предметов,
- пространство изображений.
Плоскость предметов и плоскость изображений – это плоскости, перпендикулярные оптической оси и проходящие через предмет и изображение.
В геометрической оптике любой точке пространства предметов можно поставить в соответствие сопряженную ей точку в пространстве изображений. Если из некоторой точки в пространстве предметов выходят лучи и эти лучи затем пересекаются в пространстве изображений в какой-либо точке, то эти две точки называются сопряженными.
Сопряженные линии – это линии, для которых каждая точка линии в пространстве предметов сопряжена с каждой соответствующей точкой линии в пространстве изображений (для идеальных оптических систем).
В реальных оптических системах лучи, выходящие из точки A, только приближенно сходятся в точке A′. Для идеальных оптических систем каждой точке пространства предметов обязательно соответствует идеально сопряженная ей точка в пространстве изображений.
Существуют два типа предмета и изображения:
Ближний тип – предмет (изображение) расположены на конечном расстоянии, поперечные размеры измеряются в единицах длины.
Дальний тип – предмет (изображение) расположены в бесконечности, поперечные размеры выражены в угловой мере.
Термины “конечное расстояние” и “бесконечность” достаточно условны и просто соответствуют более или менее близкому расположению предмета (изображения) по отношению к оптической системе.
ЛИТЕРАТУРА
Бегунов Б.Н., Заказнов Н.П. и др. Теория оптических систем. – М.: Машиностроение, 2004 2004
Заказнов Н.П. Прикладная оптика. – М.: Машиностроение, 2002 2002
Дубовик А.С. Прикладная оптика. – М.: Недра, 2002 2002
Нагибина И.М. и др. Прикладная физическая оптика. Учебное пособие.- М.: Высшая школа, 2005 2005