сечения жил кабеля[1];
- индуктивное сопротивление фазного и нулевого провода Ом/км;Активное и индуктивное сопротивление провода для каждой линии определяется по следующей формуле
r = rуд × L , (22)
х = худ × L , (23)
где rуд – активное удельное сопротивление проводов по [3] составляет 0,625 Ом/км;
xуд – индуктивное удельное сопротивление проводов по [3] составляет 0,3 Ом/км;
L – длина линии до опоры на которой произошло короткое замыкание, км.
Приведем пример расчета сопротивлений для первой линии (Л1)
r = 0,625 × 0,505 = 0,316 Ом/км
x = 0,3 × 0,505 = 0,151 Ом/км
Определяем величину полного сопротивления для линии (Л1) по формуле 26
Z = Ö 0,316 2 + 0,151 2 = 0,35 Ом/км
Величина однофазного тока короткого замыкания для Л1 определяется по формуле 25
Iк = 220 = 314,3 А 2 × 0,35Расчет защиты тепловым расцепителем
Тепловой расцепитель защищает сеть от перегрузки. Кроме того, он является резервной защитой для отключения токов короткого замыкания
Номинальный ток теплового расцепителя определяется по формуле
, (24)
где Iл max – максимальный ток нагрузки линии, А;
Максимальный ток для трехфазной сети вычисляется по формуле
, (25)
где Pл max – максимальная активная нагрузка линии без учета нагрузки
самого мощного электродвигателя, кВт;
- коэффициент мощности нагрузки линии.В качестве номинального тока теплового расцепителя принимается ближайшее большее значение из стандартного ряда.
Коэффициент чувствительности защиты к минимальному току однофазного замыкания на нулевой провод в конце защищаемой линии (кч), выполненной с помощью тепловых расцепителей, определяется по следующей формуле
, (26)
Данные результатов выбора автоматических выключателей приведены в таблице10.
Таблица 10 – технические данные выбора уставок автоматических выключателей | |||||||
линия | Марка провода | Длит. Допуст. Ток Провода А | Расч. Мощн. Линии, кВт | Расч. Ток А | Номин Ток уставки т.р. автомата А | коэффициент чувств. защиты | Примеч. |
Л1 | 4 А- 50 | 215 | 24,4 | 41,2 | 63 | 4,79 | >3 |
Л2 | 4 А- 50 | 215 | 25,8 | 43,6 | 63 | 4,61 | >3 |
Л3 | 4 А- 50 | 215 | 24,91 | 42,1 | 63 | 3,31 | >3 |
Л4 | 4 А- 50 | 215 | 24,1 | 40,7 | 63 | 3,34 | >3 |
2.7 Расчет заземляющих устройств на трансформаторных
подстанциях 10/0,4кВ
В проекте принята одна трансформаторная подстанция (КТП 1) мощностью 160 кВ×А.
Согласно ПУЭ п.1.7.62 сопротивление заземляющих устройств нейтрали со стороны 0,4 кВ для подстанций такой мощности допускается не более 4 Ом.
При общей длине воздушных линий 10 кВ ( lВ) электрически связанных между собой (30 км в данном проекте см. исходные данные), емкостной ток замыкания на землю может быть определен по следующей формуле
, (27)
где U – междуфазное напряжение сети, кВ.
Сопротивление заземляющих устройств должно удовлетворять следующему условию
, (28)
Где в качестве UР принимается 125 В, если заземляющее устройство используется одновременно до и выше 1000 В. Сопротивление этих сетей должно быть не более 4 ом.
Для сети 10 кВ, питающей садоводство “Лес” емкостной ток определяется по формуле 20
0.9 А
Следовательно сопротивление по условию 21 должно быть не более
138 Ом
Поскольку полученный результат больше допустимой величины (4 ом), то в качестве расчетного принимаем окончательно сопротивление 4 Ом.
В связи с тем, что естественные заземлители в местах расположения подстанции отсутствуют, расчетное сопротивление искусственного заземлителя так – же составляет 4 Ом ( сопротивление заземляющего выпуска из опоры ). Грунт в садоводстве согласно исходным данным суглинок, следовательно, его удельное сопротивление r по [5] составляет 200 Ом × м.
Предлагается сооружение заземлителя с расположением вертикальных электродов в виде трех лучей, направленных вдоль ВЛ 0,4 кВ. Материал, круглая сталь диаметром 20 мм, верхние концы вертикальных стержней погружены в землю на глубину 0,7 м, приварены к горизонтальным электродам из той же стали.
Расчетные удельные сопротивления грунта с учетом повышающих коэффициентов (2,2 для горизонтальных электродов и 1,5 для вертикальных [5]) составляют
rрасч.г = 2,2 × 200 = 440 Ом × м
rрасч.в = 1,5 × 200 = 300 Ом × м
Определяем сопротивление растекания одного вертикального электрода диаметром20 мм и длиной 2 м при погружении ниже уровня земли на 0,7 м определяется по следующей формуле
, (29)
где t – расстояние от уровня земли до середины электрода для нашего случая t = 1,7 м при наших условиях
ОмПриняв расстояние между электродами 5 м и считая, что электродов в каждом луче в один ряд, не более 6 штук находим из [6] коэффициент использования вертикальных электродов КИВ = 0,8.
Определяем примерное число вертикальных заземлителей по следующей формуле
(30)
Коэффициент использования горизонтальных электродов находим из [6]
КИГ = 0,86.сопротивление растекания одного горизонтального электрода определяется по следующей формуле
, (31)
где t – расстояние от электродов до поверхности земли, м;
lГ - общая длина горизонтальной части заземляющего устройства.
Уточняем величину сопротивления растекания, которую должен иметь вертикальный электрод
Уточняем число вертикальных электродов
Окончательно принимаем 16 вертикальных электродов, при этом сопротивление заземляющего устройства 3,7 Ом < 4 Ом это означает, что выбранное заземляющее устройство удовлетворяет требованию, изложенному в пункте 1.7.62 ПУЭ.
Заземляющее устройство соединяем сваркой с заземляющим выпуском опоры, что еще более понижает общее сопротивление растекания.
3 Экономическая часть
3.1 Технико-экономическое сравнение вариантов
Технико-экономическое сравнение в данном проекте предусматривается для двух вариантов электроснабжения садоводства. Первый вариант предусматривает электроснабжение от двух ТП, а второй вариант предусматривает электроснабжение от одной ТП. Эти два варианта необходимо сравнить по приведённым затратам.
Капитальные затраты рассчитываются для каждого варианта отдельно и определяются по следующей формуле
Кi = KТПi + KЛi , (32)
Где КТПi – стоимость трансформаторной подстанции и её монтажа из [ ], руб;
КЛi – стоимость воздушной линии 0,38 кВ, справочная величина взятая из [ ], руб.
К1 = 148000 + 515685 = 663685 руб.
К2 = 8400 + 541260 = 625260 руб.
Расходы на электроэнергию определяются для каждого варианта отдельно по следующей формуле
СЭi = А×W , (33)
где А – потери мощности воздушной линии трансформатора кВт/год;
W – стоимость электроэнергии составляет 0,27 руб/кВт×ч.
Потери мощности включают в себя потери в ВЛ и потери мощности в трансформаторе и определяются по следующей формуле
А = DРс + DРхх + DРкз , (34)
где DРс – потери мощности в сетях ВЛ, кВт;
DРхх – потери мощности в трансформаторе при холостом ходе, кВт;
DРкз – потери мощности в трансформаторе при коротком замыкании, кВт.
А1 = (6,469 + 1927,2 + 2600)×2 = 9060 кВт×ч
А2 = 9,857 + 3591 + 6110 =9711 кВт×ч
Расход на электроэнергию определяется по формуле 20
СЭ1 = 9060 × 0,27 =2446 руб/год
СЭ2 = 9711× 0,27 = 2621 руб/год
Эксплуатационные расходы для каждого варианта отдельно определяются по следующей формуле
Сi = СЭi + CТоi + СРi , (35)
где CТоi – стоимость технического обслуживания составляет 5% от Кi;