Смекни!
smekni.com

Определение основных характеристик системы передачи сообщений с дискретной фазовой модуляцией (стр. 5 из 6)


3. Пропускная способность канала связи найдем по теореме Шеннона:

4. Найдем эффективность использования пропускной способности канала связи:

8. Демодулятор

В демодуляторе осуществляется оптимальная по критерию максимального правдоподобия некогерентная обработка принимаемого сигнала

.

Требуется:

1. Записать правило решения демодулятора, оптимального по критерию максимального правдоподобия.

2. Записать алгоритм работы и нарисовать структурную схему оптимального демодулятора для заданного вида модуляции и способа приема.

3. Вычислить вероятность ошибки

оптимального модулятора.

4. Определить как нужно изменить энергию сигнала, чтобы при других видах модуляции и заданном способе приема обеспечить вычисленное значение вероятности ошибки

.

1. Так как все символы передаются равновероятно, то правило максимального правдоподобия имеет вид:


при
,

где

– отношение правдоподобия

– функция правдоподобия i-той гипотезы;
– функция правдоподобия, что никакой сигнал не передавался.

2. Для некогерентного приема при ДФМ алгоритм работы оптимального по критерию максимального правдоподобия, может быть представлен в виде:

Vi– отсчет огибающей в момент Т на выходе фильтра, согласованного с сигналом si(t).

z(t) – принимаемый сигнал с флуктационной помехой n(t) с равномерным энергетическим спектром G0 «белый шум».

si(t) – сигнал сопряженный по Гильберту, т.е. сигнал, у которого фаза смещена на 90°

При ДФМ Е0 = Е1, поэтому алгоритм оптимального когерентного приема для двоичной системы можно записать: V1>V0; при выполнении этого неравенства, принятым считается сигнал s0(t), а при невыполнении этого неравенства принятым считается сигнал s1(t).

Кроме того, т. к. при ДФМ информационный параметр сигнала определяется двумя соседними элементами [(n-1) – м на интервале [-Т; 0] и n-м на интервале [0; Т]], то оптимальный алгоритм следует записать в виде:


Приходящий сигнал s(t) на двух тактовых интервалах можно представить как:

(при передаче 0)

(при передаче 1)

После подстановки этих выражений в алгоритм получим алгоритм приема в виде:

Рис. 8.1. Схема реализации оптимального приема дискретных сообщений при неопределенной фазе сигнала

X– перемножитель; Г – генератор опорных сигналов

900 – преобразователь Гильберта;

- интегратор; БОМ – блок определения модуля; РУ – решающее устройство.

3. Вероятность ошибки оптимального когерентного демодулятора для канала с аддитивным белым шумом при передаче двоичных сообщений определяется следующим выражением:

4. При АМ

, следовательно, энергию сигнала необходимо увеличить в 4 раза.

При ЧМ

, т.е. энергию нужно увеличить в 2 раза

9. Декодер

В декодере процесс декодирования осуществляется в 2 этапа. На 1-м этапе производится обнаружение ошибок в кодовой комбинации. Если ошибок в кодовой комбинации не обнаружено, то на 2-м этапе из нее сначала выделяются к информационных двоичных символов, а затем к-разрядная двоичная кодовая комбинация преобразуется в импульс, высота которого соответствует квантованному уровню переданного сообщения.

В случае обнаружения ошибки в кодовой комбинации исправляется наиболее ненадежный символ. Информация о степени надежности символов в кодовой комбинации поступает в кодер из демодулятора.

Дешифратор (декодер) – устройство, преобразующее двоичный код в позиционный (или иной). Другими словами, дешифратор осуществляет обратный перевод двоичных чисел. Единице в каком-либо разряде позиционного кода соответствует комбинация нулей и единиц в двоичном коде, а отсюда следует, что для преобразования необходимо иметь не только прямые значения переменных, но еще и инверсии.

Требуется:

1. Оценить обнаруживающую

и исправляющую
способности кода (n, k) с одной проверкой на четность.

2. Записать алгоритм обнаружения ошибок.

3. Определить вероятность не обнаружения ошибки

4. Предложить метод определения наименее надежного символа из п символов двоичной комбинации.

1. Обнаруживающая и исправляющая способности кодов определяются минимальным кодовым по Хеммингу между кодовыми комбинациями

Данный код обнаруживает все нечетные ошибки, т. к. это код с проверкой на четность.

Код гарантировано обнаруживает q0<а-1=1 ошибку, а гарантировано исправляет qu<(d-1)/2=0.5, т.е. вообще ничего не исправляет.

2. При кодировании уровней квантованного сообщения был использован простейший систематический код (n, k), который получался путем добавления к комбинации k=n-l информационных символов одного проверочного, образованного в результате суммирования по модулю 2 всех информационных символов. После этого получается кодовая комбинация с четным числом единиц, т.е. комбинация с четным весом. Данный код способен обнаружить лишь ошибки нечетной кратности. Для этого в принятой комбинации подсчитывается число единиц и проверяется на четность. Если в принятой комбинации обнаружена ошибка (нечетный вес), то комбинация считается запрещенной.

3. Вероятность не обнаружения ошибки при декодировании с одной проверкой на четность при условии, что мы ничего не исправляем, равна:

1.107E-4

Вероятность обнаружения ошибки при таком алгоритме декодирования равна:

0.016

4. При демодуляции в РУ результат операции

сравнивается с 0 (если <0, то передавалась 1, если

0, то 0). Наименее надежным будет символ, у которого модуль этого выражения будет наименьшим. Иными словами, у которого разность фаз между соседними сигналами s(t) будет более остальных близка к
. Для регистрации наименее надежного символа в РУ следует поместить которое фиксировало бы наименьший модуль выражения из всех n символов и отправляло бы в декодер информацию о номере наименее надежного символа. Такая бы операция повторялась бы для каждых п символов.

10. Фильтр-восстановитель

Фильтр-восстановитель представляет собой фильтр нижних частот с частотой среза Fср.

Требуется:

1. Определить Fср

2. Изобразить идеальные амплитудно-частотные и фазо-частотные характеристики фильтра-восстановителя.

3. Найти импульсную реакцию g(t) идеального фильтра-восстановителя. Начертить график g(t).

1. Частоту среза фильтра-восстановителя найдем по теореме Котельникова:

2. Идеальная АЧХ фильтра-восстановителя имеет вид:

Рис. 10.1 Идеальная АЧХ фильтра-восстановителя.

Идеальная ФЧХ фильтра-восстановителя имеет вид:

Рис. 10.2. Идеальная ФЧХ фильтра-восстановителя

3. Найдем импульсную реакцию фильтра-восстановителя

Пусть

,
с,