Смекни!
smekni.com

Оценка качества монтажных соединений электронной аппаратуры (стр. 6 из 11)

При монтаже ЭА создаются достаточные условия для реализации такого механизма разрушения. Можно сделать предположение о наличии двух источников формирования среды, содержащей дефекты структуры: во-первых, частицы посторонних веществ; во-вторых, продукты физико-химических реакций на поверхности и в объеме МОС. Эти источники обладают большой интенсивностью на этапе активации МОС во время монтажа, особенно при отсутствии защитной среды.

Удаление посторонних веществ с поверхности принципиально не возможно в реальных условиях монтажа, так как даже при идеальной очистке поверхности от минеральных и органических загрязнений поверхность металла обладает столь высокой активностью, что практически мгновенно покрывается молекулами окружающей среды, образующими на ней адсорбированные пленки. На металлах и полупроводниках прежде всего образуются окисные пленки, толщина которых может меняться от мономолекулярного слоя, до десятков-сотен нанометров. Помимо окисных пленок, поверхность может захватывать достаточно толстые слои воды, жира и других веществ из окружающей среды. Прочность закрепления адсорбированных слоев, особенно окисных пленок, весьма высокая, и удаление, их с поверхности представляет большие трудности.

Особенностью поверхностей полимерных материалов [21] является их большая гидрофобность. Процесс адсорбции и проникновения влаги через поверхность состоит из сорбции (поглощения) ее поверхность диффузии в приповерхностный слой и возможной десорбции (выделении) на границе раздела поверхности и окружающей среды. При слабом взаимодействии влаги с поверхностью скорость прохождения ее через поверхность определяется законом диффузии

, (2.6)

где Q – количество продиффундировавшей влаги;

dc/dx – градиент концентрации влаги в приповерхностный слой;

S – площадь поверхности;

t – время диффузии;

– коэффициент диффузии.

При слабом взаимодействии влаги и полимера обычно выполняется закон Генри, согласно которому концентрация влаги в полимере пропорциональна давлению пара над полимером

:

,(2.7)

где

– коэффициент сорбции.

Подставляя (2.7) в (2.6), находим

,(2.8)

где

– коэффициент проницаемости, численно равный количеству пара, прошедшему через единичную площадку поверхности полимера в единицу времени при градиенте давления, равном единице.

Для примера в таблице 2.1 приведено рассчитанное по формуле (2.8) время образования монослоя влаги для ряда полимеров, широко используемых в ЭА. Из данных таблицы 2.1 видно, что время возникновения монослоя может быть значительно меньше времени межоперационного промежутка при монтаже ЭА. Водопроницаемость существенно зависит от физического состояния полимеров, гибкости их цепей, плотности упаковки молекул и других факторов. Наибольшей проницаемостью обладают аморфные полимеры с гибкими цепями, находящиеся в высокоэластическом состоянии (каучуки, резины), наименьшей – полимеры с жесткими цепями в стеклообразном состоянии. В одном и том же состоянии проницаемость полимера понижается с ростом плотности упаковки его молекул и достигает максимального значения в кристаллическом или частично кристаллическом состоянии (фторопласт - 4).

Таблица 2.1 – Время образования монослоя влаги для ряда полимеров

Материал Фторопласт 4 Эпоксидная смола Поли-этилен Поли-стирол Кремний-органическая резина
Время образования монослоя влаги, с 2400-600 35 45-22 10-5 5-1

Эти закономерности легко понять, рассмотрев механизм диффузии паров и газов в полимерах. Как и в случае жидкостей, диффузия молекул газа в полимерах совершается по пустотам, которые непрерывно образуются вследствие теплового движения отдельных участков молекул. С увеличением гибкости цепей увеличивается их подвижность, а, следовательно, и вероятность образования пустот, по которым может происходить диффузия молекул пара, что и приводит к росту проницаемости полимеров в высокоэластическом состоянии. У стеклообразных полимеров с жесткими цепями проницаемость растет с увеличением рыхлости упаковки молекул, приводящей к появлению большого числа микропор.

Таким образом, можно предположить, что подготовленные для соединения поверхности являются достаточно мощным поглотителем посторонних частиц, которые ослабляют прочность материала и определяют механизм начала процесса разрушения как возникновение и развитие трещин. Значительный рост напряжения на концах развивающейся трещины обуславливает ослабление процессов ползучести и в сторону хрупкого разрушения. Развитие микротрещин происходит в слое материала, структура и свойства которого могут определяться характером физико-химического взаимодействия, в котором участвуют соединяемые материалы, при участии внешних факторов, обуславливающих значительный вклад в несовершенство структуры и состава МОС.

2.2 Моделирование процессов формирования структуры МОС в составе соединения

В зависимости от исходных физико-химических свойств соединяемых материалов, а также режимов монтажа, МОС в составе соединения может иметь различные структуру и состав.

Для полимерных материалов характерно проявление основных свойств, связанных с термореактивностью и влиянием активаторов типа растворителей, загустителей и других компонентов, приводящих к значительному изменению свойств полимерных МОС после образования соединения. Целенаправленное воздействие на протекание процесса образования соединения с использованием полимерных материалов учитывает закономерности влияния растворителей и других дополнительных компонентов на структуру материала, его реологические свойства диффузию и адсорбцию к соединяемым поверхностям.

Основной интерес представляют закономерности массопереноса, приводящие к диффузным явлениям, отстающим по скорости от процессов адсорбции и набухания исходных поверхностей. Общее представление о механизме диффузии при взаимодействии полимерных материалов дает теория стохастических процессов, которая связывает величину коэффициента диффузии с частотой перескока молекулы и расстоянием ее свободного пробега [22]. Это позволяет рассматривать переход диффундирующей молекулы из одного положения в другое как преодоление энергетического барьера между двумя равновесными состояниями, охарактеризовать общие затраты энергии на перенос вещества в структуре полимерного материала и провести на этой основе анализ процессов массопереноса при образовании монтажного соединения. Абсолютные значения энергии активации диффузии для различных по природе материалов и условий монтажа изменяются в широких пределах. Общим приемом изменения энергии активации является введение органического растворителя, что приводит к ее уменьшению, проявляется в увеличении коэффициента диффузии и соответствующем ускорении всего процесса.

Большую роль в процессе монтажа с использованием полимерных материалов может играть пористость соединяемых поверхностей. При рассмотрении закономерностей переноса [23, 24] в системе статических микропор, радиус которых значительно больше размера диффундирующих частиц. Коэффициент диффузии зависит от пористости полимера, извилистости пор, изменении химического потенциала при переходе материала из растворенного в адсорбированное состояние и концентрации адсорбционных центров.

Более простым вариантом интерпретации механизма диффузии в полимерах является использование результатов теории свободного объема полимера V, образующегося в результате теплового движения сегментов полимерной цепи. Поскольку свободным объемом обладает любая конденсированная среда, то при наличии растворителей, пластификаторов, и других компонентов общий свободный объем в первом приближении определяется суммой свободных объемов компонентов системы, причем свободный объем каждого компонента линейно возрастает при повышении температуры. Поэтому величину V можно выразить соотношением

, (2.9)

где

– доля свободного объема
-го компонента при его температуре стеклования
;

– объемная доля
-го компонента в системе;