Соответствующее объему пачки
число каналов выбирается с учетом соотношений, приведенных выше. Расчеты и результаты математического моделирования показывают, что при максимальная величина потерь пачечной обработки не превышает 2 дБ; средние (при равномерном распределении доплеровского сдвига) потери < 1 дБ. Отметим, что если ставится задача не только когерентного накопления, но и оценки доплеровского сдвига обнаруженного сигнала, то число каналов должно выбираться исходя из заданной точности оценки.9.3. Квазикогерентный экстраполяционно-фазовый обнаружитель.
Экстраполяционно-фазовый обнаружитель (ЭФО) представляет одноканальную схему обнаружения – оценивания, т.е. реализует второй возможный подход к проблеме устранения априорной неопределенности.
Суть метода ЭФО заключается в рекурсивном сглаживании фазовых отсчетов и экстраполяции сглаженной фазовой траектории на следующий период повторения. При этом на каждом 1-м периоде повторения с учетом разности
текущего отсчета фазы и ее экстраполированного значения, вычисленного на предыдущем шаге, рассчитывается решающая статистика и экстраполированное (ожидаемое) на -й период повторения значение фазы . Очевидно, что такой рекуррентный алгоритм расчета решающей статистики органично сочетается с последовательной процедурой принятия решения.Метод ЭФО позволяет настраиваться в ходе наблюдения на фазовую траекторию, соответствующую истинному значению доплеровской частоты, и, постепенно повышая точность ее измерения, приближать процесс накопления к когерентному.
Алгоритм ЭФО достаточно просто реализуется при допущении о линейном изменении фазы сигнала во времени. При этом для сглаживания фазы может использовать рекурсивный алгоритм, аналогичный применяемому в системах вторичной обработки информации для сглаживания траекторий целей:
экстраполированное значение фазы - сглаженное значение фазыКоэффициенты сглаживания
и является функциями шага наблюдения, а также зависят от дисперсии экстраполированной оценки фазы и дисперсии фазы текущих отсчетов: .С учетом полученной оценки фазы
рассчитывается апостериорное распределение неизвестного параметра по которому затем усредняется условное отношение правдоподобия, соответствующее точно известному параметру . Можно показать, что логарифм безусловного отношения правдоподобия при этом имеет вид: .С учетом известного разложения:
полученное выражение обобщает формулы (2.3) и (3.2) для логарифма отношения правдоподобия, соответствующие двум крайним случаям: сигналу с точно известной фазой и сигналу со случайной фазой . Таким образом, по мере уточнения оценки алгоритм ЭФО приближается к истинно когерентному.Основное ограничение, присущее рассмотренному алгоритму, связано с тем, что использованное в нем предположение о линейном характере фазовой траектории при импульсной радиолокации не выполняется: из-за стробоскопического эффекта интервал однозначного измерения фазы составляет
, т.е. реальная фазовая траектория имеет циклический (пилообразный характер). скачки фазы при переходе через точку могут приводить к ошибкам сглаживания траектории и, как следствие, к уменьшению эффективности накопления (см. рис.9.2).Если ни одно из вышеуказанных условий не выполняется , то происходят сбои сопровождения (сглаживания), в результате решающая статистика вычисляется с ошибками и увеличивается вероятность пропуска сигнала. При типичных для радиолокации частотах построения порядка сотен Гц, алгоритм ЭФО удовлетворительно работает при отношениях сигнал/шум порядка –6 дБ и более, при меньших значениях
из-за нарастания вероятности сбоев эффективность падает, величина выигрыша алгоритма ЭФО относительно некогерентного последовательного алгоритма при составляет около двух раз.В заключении отметим, что алгоритм ЭФО принципиально не обеспечивает разрешения по доплеровской частоте объектов, пространственные координаты которых совпадают (например – цели в облаке пассивных помех). Многоканальные схемы свободны от указанных недостатков.