где величина
определяется длительностью сигнала . Таким образом, характеристика искомой оптимальной системы имеет вид: .В частности,
.Как видно из полученного соотношения, механизм оптимальной обработки сигнала в данном случае подобен механизму работы согласованного фильтра, однако, в дополнение к этому, оптимальная система подавляет в большей степени те частотные составляющие входного воздействия, которые соответствуют относительно большим составляющим энергетического спектра помехи
.5.Оптимизация по критерию минимума среднеквадратической ошибки воспроизведения полезного сигнала
Рассмотрим задачу воспроизведения полезного сигнала, представленного реализацией случайного процесса
, на фоне шума . По-прежнему энергетические спектры этих процессов обозначим соответственно и , однако, в отличие от 2, эти функции могут иметь произвольный вид, причем вид характеристики анализируемой линейной системы также заранее не известен.С учетом результатов 2 в общем случае имеем:
,так что суммарная СКО воспроизведения полезного сигнала:
.Представим полученное выражение в форме:
Представим сумму вещественных функций
как некоторую вспомогательную вещественную функцию :Тогда:
В полученном интеграле оба слагаемые подынтегрального выражения неотрицательны, причем лишь первое из них зависит от вида функции
. Поэтому можно считать, что величина достигает своего минимального значения, если выполняется соотношение: .Следовательно, оптимальный вид функции
определяется выражением: .При этом величина СКО воспроизведения полезного сигнала, очевидно, вычисляется по формуле:
.Заметим, что в случае, когда энергетические спектры процессов
и не перекрываются, величина оказывается равной нулю, что и следовало ожидать. Далее, в условиях , т.е. при отсутствии шума получаем , что также имеет ясный физический смысл. В то же время в общем случае величина принимает наименьшее значение на тех частотах, где величина максимальна. В этом смысле механизм оптимальной фильтрации по критерию минимума СКО воспроизведения полезного сигнала подобен механизму оптимальной фильтрации по критерию максимума отношения сигнал/шум на выходе системы.Сравним теперь величину потенциально допустимой относительной СКО в рассмотренном случае с результатом параметрической оптимизации, полученным в 4.1.2. Итак, пусть
Тогда
Вычисляя интеграл и учитывая, что
и , получаем:откуда окончательно минимальная относительная СКО воспроизведения полезного сигнала равна:
.Полученный результат иллюстрируется на рисунке ниже. Здесь же пунктиром приведен соответствующий результат параметрической оптимизации в рассмотренном в частном случае использования фильтра с прямоугольной функцией передачи в частотной области.
Как видно из приведенных выше зависимостей, полная оптимизация позволяет получить реальный выигрыш в величине СКО воспроизведения полезного сигнала в сравнении с параметрической оптимизацией.