Смекни!
smekni.com

Передача электрической энергии, характеристика ЛЭП (стр. 2 из 2)

Снижение суммарного реактивного сопротивления электропередачи, включающего сопротивление генераторов, так же повышает предел мощности по статической устойчивости. При снижении реактивного сопротивления уменьшается потеря напряжения, но возрастает величина тока короткого замыкания, для отключения которого необходимы более мощные и дорогие выключатели. Суммарное реактивное сопротивление уменьшают за счет применения на удаленной станции генераторов с пониженной величиной синхронного сопротивления и трансформаторов на повышающей подстанции, имеющей сниженное напряжение короткого замыкания и сопротивления. На понижающей подстанции в конце электропередачи устанавливают автотрансформаторы, сопротивление которых меньше, чем у трансформаторов. Расщепление фазы на несколько проводом и совершенствование конструкции расщепленных фаз и конструкции опор линий снижают индуктивность и индуктивное сопротивление линий(примерно на 25-35%), повышают ее натуральную мощность и критическое напряжение короны. При этом усложняется конструкция линий и увеличивается ее стоимость. Возрастание емкости линии при расщеплении вызывает нежелательное увеличение емкостного тока и соответственно ему мощности. Данные о количестве проводов в фазах линий приведены в таблице №2. На ВЛ 220 кВ в редких случаях фаза состоит из двух проводов.

Дальнейшее увеличение придела передаваемой мощности достигается с помощью специальных мер по изменению (компенсации) параметров линий, которые в этом случае именуются компенсированными. Снижение индуктивного сопротивления достигается за счет последовательного включения в линию конденсаторных установок продольной компенсации (УПК), которые повышают стоимость ЛЭП и увеличивают токи короткого замыкания.

Большой емкостной ток дольних линий при сниженной нагрузке вызывает дополнительные потери активной мощности и энергии, активной мощности и энергии, нежелательной или недопустимое распределение в пунктах линии, а также снижение реактивной нагрузки, ЭДС и устойчивости генераторов удаленной станции. Поэтому емкостной ток и соответствующую проводимость линии компенсируют включением на шины высшего напряжения удаленной электростанции и в переключательных пунктах линии установок (реакторов) поперечной компенсации (РПК). При нагрузках, близких к натуральным, РПК отключают. По размерам стоимости РПК близки к трансформаторам соответствующего напряжения и мощности и потребляют электроэнергию. Капитальные вложения в ЛЭП увеличивается также за счет применения дополнительных выключателей для РПК.

Установка устройств продольной и поперечной компенсации по воздействию на режим электропередачи соответствует уменьшению ее длины по сравнению с некомпенсированной электропередачей. При определенных параметрах и расположении УПК эквивалентное продольное сопротивление линий становится активным. Емкостной ток линии возможно полностью компенсировать посредствам РПК. По эквивалентным реактивным параметрам такая компенсированная линия имеет нулевую длину. Электрическая энергия передается электромагнитными волнами, распространяющимися со скоростью, близкой к скорости 300*103 км/с, т.е. за 0,02 с, равной длительности периода при частоте 50 Гц, электромагнитная волна проходит расстояние 6000 км. Линия длинной 3000 км по условию устойчивости обладает повышенной пропускной способностью и называется полуволновой. За счет включения управляемых реактивных элементов (конденсаторов, реакторов) линии, длинна которых отлична от 3000 км, придаются свойства, характерные для некомпенсированной полуволновой линии. Настройка на полуволну может оказаться целесообразной при длине линии 1500-2000 км.

На рисунке №4 изображена упрощенная схема компенсированной ЛЭП 500 кВ повышенной пропускной способности.

По длинной компенсированной линии при максимальной нагрузке экономически нецелесообразно передавать реактивную мощность. Для ее регулирования на приемной подстанции и в некоторых случаях на промежуточных подстанциях или ПП устанавливают источники реактивной мощности (компенсирующие устройства)- синхронные, статические теристорные компенсаторы.

Указанные мероприятия по повышению пропускной способности электропередачи являются достаточно долгими. Опыт, показал, что при возникновении новых промышленных районов более целесообразным является сооружение электропередачи с промежуточными подстанциями, включенными вдоль нее. Подстанции могут совмещаться с переключательными пунктами линии или создаваться вновь (рисунок №5, а). Такая электропередача обладает большой устойчивостью, не требует установки реакторов и т.п. стоимость ЛЭП снижается.

На рисунке №5 изображены упрощенные схемы электропередачи 500 кВ с включенными вдоль линии промежуточными подстанциями ПС1-ПС3. Для повышения устойчивости электропередачи в линию включают последовательно конденсаторы (УПК) (рисунок№5,а) или компенсаторы (синхронные или статические) на промежуточных подстанциях (рисунок №5, б)

Наряду с отмеченными, применяют устройства автоматического регулирования: автоматическое регулирование возбуждения генераторов и синхронных компенсаторов, быстродействующее регулирование мощности турбин, регулирование напряжения по концам электропередачи, быстродействующие выключатели и релейную защиту и др., что способствует повышению устойчивости и пропускной способности электропередачи.

Рассмотренные схемы линий электропередачи (рисунок №1-№5) позволяют доставить электроэнергию потребителям от двух генерирующих источников и называются электропередачами с двусторонним питанием. По мере развития передающей сети в промежуточных пунктах магистральной сети наряду с понижающими подстанциями подключается отдельная электропередача, имеющая генерирующие источники, с оборотом или выдачей мощности (рисунок №6). В итоге формируется узловая система с тремя центрами питания и более высокой устойчивостью и пропускной способностью. В дальнейшем магистральные системообразующие сети, присоединены к двум-трем центрам питания, усложняются и преобразуются в замкнутые многоконтурные передающие сети с сосредоточенными нагрузками (рисунок №7). Замкнутые сети обеспечивают наибольшую надежность, поскольку авария (отключение) на каком-либо участке сети имеет последствия (например, ограничение потребляемой мощности) только для потребителей, непосредственно подключенных к этому участку.

В системах передачи электроэнергии с сосредоточенными нагрузками непрерывность электроснабжения не может быть нарушена отдельной аварией, т.к. электроснабжение подстанций ПС1-ПС4 (центров питания распределительных сетей 6-220 кВ) осуществляется по двум и более линиям от нескольких независимых источников. Однако в замкнутых сетях более сложна, чем в разомкнутых релейная защита и автоматика.

Внутрисистемные передачи электроэнергии, осуществляемые магистральными одно-двухцепными воздушными линиями220-330 кВ, обеспечивают связь отдельно расположенных электростанций и центров питания 6-220 кВ распределительных сетей.