Из (3.13) следует, что ДУ ослабляет синфазные сигналы
Uвх.синф.=Uc2=Uс1
так как при этом
Uвых=(Uвх синф К+*)/ Fsус → 0,
где Fsус - коэффициент ослабления синфазных сигналов дифференциальным усилителем на ОУ (сам ОУ имеет коэффициент ослабления синфазных сигналов Fs). В идеальном ДУ когда Fs®¥ и абсолютно точно выполняется (3.12), величина Fsус®¥. На практике из-за ограниченности Fs реальных ОУ и неточности выполнения (3.12) наблюдается конечная величина Fsус.. Для ее увеличения при заданном типе ОУ часто применяют вместо дискретных сопротивлений R1, R2, R3, Rос интегральные резистивные матрицы сопротивлений, выполненные на одной подложке по одному технологическому циклу. Значения сопротивлений резистивных матриц при действии дестабилизирующих факторов (температура, старение и др.) изменяются по одинаковому закону, при этом условие (3.12) выполняется с высокой точностью (с относительной погрешностью 10-3…10-4). Это позволяет достигнуть в ДУ на ОУ, работающих в широком диапазоне температур окружающей среды, значения Fsус. , близкие к Fs. При использовании в ДУ дискретных сопротивлений R1, R2, R3, Rос увеличение Fsус. может быть достигнуто только в узком температурном диапазоне путем подстройки сопротивлений для обеспечения (3.12), (3.13) с требуемой точностью.
Дифференциальные сигналы в ДУ, как следует из (3.13), усиливаются с коэффициентом усиления
(3.14)3.4. Влияние напряжения и токов смещения на работу усилителя на ОУ
Наличие Uсм и Jсм приводит к возникновению в усилительном каскаде на этом ОУ выходного напряжения сдвига Uвых.сдв при нулевом входном сигнале. Амплитудные характеристики неинвертирующего усилителя при различных Uвых.сдв приведены на рис.3.8.
Рис.3.8.
Видно, что наличие Uвых.сдв¹0 приводит к погрешности усиления полезных сигналов, а так же к изменению динамических диапазонов входных сигналов положительной и отрицательной полярности. Величина Uвых.сдв определяется параметрами ОУ и схемой его включения.
Порядок оценки Uвых.сдв в усилителях на ОУ.
1. В анализируемом усилителе определяют эквивалентное сопротивление R – по постоянному току между входом «–» ОУ и общей точкой («землей») и эквивалентное сопротивление R+ по постоянному току между входом «+» ОУ и общей точкой (R+ и R – определяют с учетом сопротивления Rс источников сигналов по постоянному току).
2. Рассчитывают напряжения, вызываемые Jсм1, Jсм2 на инвертирующем и неинвертирующем входах усилителя
U1=Jсм1R –, U2=Jсм2R+.
3. Рассчитывают коэффициенты усиления К+ и К – на постоянном токе.
4. Рассчитывают Uвых.сдв по формуле
Uвых.сдв = К+Uсм + К –U1 + К+U2 (3.15)
Например, для схемы инвертирующего усилителя (рис.3.2)
при Rc<<R1,
R –=R1Rос / (R1+Rос), R+=R2,
Uвых.сдв.»Rос[(Uсм+Jсм2R2)/R1 - Jсм1], (3.15а)
для схемы неинвертирующего усилителя
Uвых.сдв.»Rос[(Uсм+Jсм2Rс)/R1 - Jсм1], (3.15б)
3.5. Измерение напряжения и токов смещения ОУ
ИзмерениеUсм
Из формул (3.3), (3.7), (3.15) следует, что Uсм можно определить по выходному напряжению усилителя при R –=R+=0, то есть путем измерения Uвых. В схеме повторителя рис.3.9. при R –=0.
рис.3.9.
Uсм= Uвых (3.16)R+=0
R –=0.
Измерение Jсм1 и Jсм2
При R+=0, R –¹0 (см. формулу (3.15)) Uвых= Uсм– Jсм1R –, откуда
(3.17)аналогично, при R –=0, R+¹0, Uвых= Uсм+ Jсм2R+,
(3.18)Определив Jсм1 и Jсм2 , рассчитывают Jсм и Jр по формулам (3.1) и (3.1а).
4.ОПИСАНИЕ ЛАБОРАТОРНОЙ УСТАНОВКИ
В состав лабораторной установки входят:
1) лабораторный макет;
2) лабораторный блок питания (типа ТЭС 13);
3) универсальный вольтметр (типа В7-15, В7-16).
Лабораторный макет содержит:
а) усилитель на ОУ (типа К140УД9) с коммутационными элементами, обеспечивающими набор схем инвертирующего усилителя, повторителя напряжения, не инвертирующего усилителя;
б) дифференциальный усилитель на ОУ с внешними сопротивлениями, выполненными на микросхемной резистивной матрице (типа 301НР1); дифференциальный усилитель включается специальным переключателем (Вкл) и расположен в правой нижней части лицевой панели лабораторного макета;
в) два встроенных источника регулируемого постоянного напряжения (Uвых= – 1.5…+1.5В), расположенных на верхней части корпуса лабораторного макета (U1, U2);
г) встроенное переменное сопротивление (для измерения Rвых усилителя), выводы которого расположены в левой верхней части лицевой панели лабораторного макета;
д) встроенный источник регулируемого постоянного напряжения, предназначенного для компенсации напряжения смещения усилителя (с возможностью грубой и плавной регулировки), расположенный в левой нижней части лицевой панели лабораторного макета.
Питание лабораторного макета осуществляется от источника постоянного напряжения Еп=24…30В.
Внешний вид лицевой панели с нанесенной на нее принципиальной схемой лабораторного макета представлен на рис.4.1.
5. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ
5.1. Измерение токов и напряжения смещения.
а) Набрать на лабораторном макете схему повторителя напряжения (рис.3.9.), обеспечив R –=0 и R+=0. Измерить Uвых усилительного каскада, Uсм=Uвых.
б) Набрать на лабораторном макете схему повторителя напряжения (рис.3.9.), обеспечив R+=0 и R –=1 Мом. Измерить Uвых , рассчитать Jсм1 по формуле (3.17), используя значение Uсм, полученные в пункте а.
в) Набрать на лабораторном макете схему повторителя напряжения (рис.3.9.), обеспечив R –=0 и R+=1 Мом. Измерить Uвых , рассчитать Jсм2 по формуле (3.18).
г) Определить Jсм и Jр по формулам (3.1) и (3.1а). Занести результаты в таблицу 5.1.
Таблица 5.1.
тип ОУ | Uсм | Jсм1 | Jсм2 | Jсм | Jр |
К14ОУД9 |
5.2. Исследование инвертирующего усилителя
а) Набрать на лабораторном макете схему инвертирующего усилителя (рис.3.2), обеспечив R1»36 кОм, Rос»1 Мом, R2»1 Мом.
Провести измерения R1 и Rос при помощи универсального вольтметра (с обязательным их отключением в процессе измерения от входа «–» ОУ). Рассчитать К – по формуле (3.3).
Определить Uвых.сдв. усилителя по формуле (3.15а). Результаты занести в таблицу 5.2.
Таблица 5.2.
R1 | Rос | К – | Uвых.сдв | Rвх |
Расчет | ||||
Эксперимент |
б) Снять зависимости выходного напряжения усилителя от входного, построить амплитудную характеристику усилителя. В качестве Uвх Использовать встроенные источники регулированного постоянного напряжения (U1,U2). Измерить Uвых.сдв. усилителя путем измерения Uвых при Uвых.сдв=0, сравнить с результатами расчетов по формуле (3.15а).
в) Подключить на вход усилителя напряжение, компенсирующее сдвиг нуля (см.рис.3.3.). используя грубую и точную регулировку Uсм установить Uвых=0 с погрешностью £±5мВ. Повторно снять амплитудную характеристику усилителя и построить ее на одном графике с АХ, полученной в пункте б). Измерить К –=Uвых/Uвх, сравнить с расчетом по формуле (3.3).
г) Измерить Rвх при помощи внешнего переменного сопротивления, выводы которого выведены на панель лабораторного макета. Измерения проводить по методике, изложенной в приложении 1. Результат измерения сравнить с R1, сделать выводы.
Занести результаты в таблицу 5.2. результаты измерения К –, Uвых.сдв, Rвх.
Примечание: Номиналы сопротивлений R1, R2, Rос могут быть отличны от указанных в пункте а. и заданны преподавателем из имеющегося набора сопротивлений.
5.3 Исследование неинвертирующего усилителя
а) Набрать на лабораторном макете схему неинвертирующего усилителя (рис.3.4.), обеспечив R1»100 кОм, Rос»1 Мом, R3»1 Мом (см. примечание в подразделе 5.1).
Провести измерения R1, Rос как это указанно в подразделе 5.1. Рассчитать К+ по формуле (3.7). Определить Uвых.сдв усилителя по формуле (3.15б). Результаты занести в таблицу 5.3.
Таблица 5.3
R1 | Rос | К+ | Uвых.сдв | Rвх |
Расчет | ||||
Эксперимент |
б) Измерить Uвых.сдв усилителя путем измерения при Uвых при Uвх=0.
Подключить на вход усилителя напряжение, компенсирующее сдвиг нуля (см.рис.3.5). Используя грубую и точную регулировку Uсм установить нулевое входное напряжение с погрешностью менее ±5мВ. Снять амплитудную характеристику усилителя, построить ее на одном графике с АХ инвертирующего усилителя. Измерить К+=Uвых/Uвх, сравнить с расчетом по формуле (3.7)