Рис. 1. Годографы характеристического комплекса
Находим корни мнимой части характеристического комплекса, приравнивая его нулю: Im(
) = 0. Найденные значения корней подставим в действительную часть и вычислим ее. Если действительная часть меняет знак при последовательной подстановке корней в порядке увеличения их значений, то система устойчива. Иначе говоря, в устойчивой системе корни мнимой и действительной частей характеристического комплекса перемежаются.Поскольку в замкнутой системе все передаточные функции, связывающие входные и выходные величины, не отличаются знаменателем, то для определения устойчивости можно использовать характеристический комплекс любой частотной передаточной функции замкнутой системы.
Коэффициент (
) является коэффициентом усиления разомкнутой системы , при увеличении годограф смещается вправо и при критическом значении пройдет через начало координат. Поэтому величина А (рис. 4.1) определяет запас устойчивости по амплитуде.Критерий Найквиста базируется на исследовании поведения годографа частотной передаточной функции (амплитудно-фазовой характеристики) разомкнутой системы.
Рис.2. Годографы частотной передаточной функции разомкнутой системы
Если годограф частотной передаточной функции разомкнутой системы, устойчивой в разомкнутом состоянии, при изменении частоты
от 0 до не охватывает точку с координатами (-1;j0) , то система устойчива, в противном случае система не устойчива (рис. 2).Если годограф проходит через точку с координатами (-1;j0), то система находится на границе устойчивости. Это означает, что на некоторой частоте фазовый сдвиг равен
,а модуль частотной передаточной функции А(ω)=1. Поскольку в замкнутой системе имеет место отрицательная обратная связь, то при таком фазовом сдвиге обратная связь становится положительной и выполняются условия самовозбуждения.Для систем, содержащих интегрирующие звенья, годограф уходит в «бесконечность» при
. Тогда, чтобы решить охватывает или нет годограф точку с координатами (-1;j0), его дополняют дугой бесконечно большого радиуса, которая начинается на положительной полуоси вещественных чисел и заканчивается на пересечении с годографом. Дуга проводится в направлении по часовой стрелке.Необходимость в дополнении годографа дугой обусловлена следующим. Вывод критерия Найквиста базируется на критерии устойчивости Михайлова, из которого следует: если в точку с координатами (-1;j0),поместить начало вектора, соединяющего эту точку с кривой АФХ разомкнутой системы (рис.4.3), то для устойчивой системы этот вектор при изменении частоты
от 0 до , описав АФХ этой системы, не должен совершить ни одного оборота вокруг точки с координатами (-1;j0). Если же АФХ охватывает эту точку, то полное приращение аргумента вектора составит 360 градусов.Критерий позволяет оценить запас устойчивости по фазе и амплитуде (рис. 4). Запас устойчивости по фазе показывает на какую величину необходимо увеличить запаздывание в системе, чтобы она оказалась на границе устойчивости и рассчитывается по формуле:
,где
─ частота среза определяемая из условия:Рис.3.Годограф, дополненный дугой
Запас устойчивости по фазе для хорошо демпфированных систем должен составлять
.Запас устойчивости по амплитуде В показывает во сколько раз необходимо увеличить усиление в системе, чтобы она оказалась на границе устойчивости:
,Рис 4. Определение запасов устойчивости
Определение устойчивости с помощью ЛАЧХ разомкнутой системы
Устойчивость минимально-фазовых систем, может быть определена по ЛАЧХ. Необходимым и достаточным условием устойчивости в этом случае является пересечение ЛАЧХ оси частот с наклоном -20дБ/дек.). Запас считается достаточным, если протяженность этого участка не менее одной декады.
Если система не является минимально-фазовой, то для определения устойчивости и запаса устойчивости, необходимо использовать ЛФЧХ.
Условие устойчивости: значение фазы на частоте среза меньше
: .Запас устойчивости по фазе:
или .Запас устойчивости по амплитуде определяется на
: ;Запас устойчивости по амплитуде
показывает на сколько дБ необходимо увеличить усиление в системе, чтобы она оказалась на границе устойчивости (рис. 5)Рис. 5. Логарифмические характеристики разомкнутых систем: 1 – ЛЧХ устойчивой системы; 2 – ЛЧХ неустойчивой системы.
Абсолютно и условно устойчивые системы
Проанализируем АФХ разомкнутой системы (рис. 6), содержащей в своем составе апериодические и интегрирующие звенья. АФХ соответствует передаточной функции:
где К – коэффициент усиления или добротность системы.
Система устойчива, так как годограф не охватывает точку c координатами (-1, j0).
С увеличением К запас устойчивости уменьшается и при некоторомРис. 6. Годографы передаточной функции абсолютно устойчивых систем
значении коэффициента усиления
( на графике, рис.6) система теряет устойчивость.Системы, добротность которых ограничена условиями устойчивости лишь сверху, называются абсолютно устойчивыми:
.Как правило, величину коэффициента усиления выбирают из условия обеспечения заданной точности, а для достижения устойчивости вводят корректирующие звенья. В результате годограф деформируется (рис. 7).
Рис. 7. Годограф частотной передаточной функции разомкнутой системы с корректирующими звеньями
При этом
.Если для такой системы увеличивать К, то при некотором его значении система станет не устойчива (рис. 8).
При этом
.Рис.8. Годограф частотной передаточной функции
неустойчивой системы
Если К уменьшать, то годограф сжимается к оси ординат и система также становится неустойчивой (рис. 9). При этом
; .Системы, добротность которых ограничена условием устойчивости как снизу, так и сверху называют условно устойчивыми. Для условно устойчивых систем число критических частот, меньших чем
, четно.