Смекни!
smekni.com

Кодоимпульсный аналого-цифровой преобразователь (стр. 2 из 2)

Таблица 3

Коэффициент усиления напряжения 50000
Дрейф напряжения смещения 6МкВ/˚C
Входное напряжение 12 В
Выходное напряжение 11,5 В
Напряжение источника питания ±15 В

2.2.4 Сравнивающий усилитель

В соответствии с ТЗ должно обеспечиваться подключение к АЦП нагрузки не менее 1МОм.

На рисунке 4 представлена схема подключения через повторитель напряжения, называемый также буфером, так как он обладает изолирующими свойствами (большим входным импедансом и малым выходным).

Рисунок 4 – Повторитель напряжения

Входное сопротивление для повторителя напряжения может быть равным многим сотням мегом на низких частотах, а выходное сопротивление меньше 1Ом, поэтому используется не взятая за базисную микросхема К140УД7, а импортный усилитель NE5534, который предназначен для работы на нагрузку до 600 0м.

Далее в каскаде с повторителем напряжения используется дифференциальный усилитель, для которого справедливо следующее соотношение[10]:

(8)

2.2.6 Компараторы

Элементная база компаратора представляет собой микросхему КМ594СА3[11], совместимой с КМОП цифровыми микросхемами.

Основные характеристики компаратора приведены в Таблице 4:


Таблица 4 – Основные характеристики компаратора

Напряжение источника питания Uп ±15 В
Время задержки tЗ 200нс
Коэффициент усиления Kу 150000
Напряжение смещения нуля Uсм 0,003 В

2.2.7 Счетчик

Девятиразрядный двоичный реверсивный счетчик построен на трех четырехразрядных серии К564ИЕ11[5]. Условное графическое обозначение микросхемы К564ИЕ11 изображено на рисунке 5.

Рисунок 5 – Счетчик

D1, D2, D3, D4–вход установки 1‑го, 2‑го, 3‑го и 4‑го разрядов соответственно; V–вход разрешения установки; P0–вход переноса; ±1–вход определяющий режим сложение/вычитание; Q1, Q2, Q3, Q4–выходы соответствующих разрядов; p-выход переноса.

Для синтеза девятиразрядного счетчика необходимо знать таблицу истинности данного устройства. Таблица истинности данного счетчика соответствует таблице 5

Таблица 5

Вход переноса Сложение / вычитание Разрешение установки Установка нуля Действие
P0 ±1 V R
1 X 0 0 Нет счета
0 1 0 0 Работа на сложение
0 0 0 0 Работа на вычитание
X X 1 0 Установка
X X X 1 Установка нуля

Связь счетчиков осуществляется через соединение выхода переноса младшего к входу старшего.

Режимы Сложение/Вычитание осуществляются в младшем счетчике. Когда компаратор зафиксирует выход за пределы разрешающей способности (что соответствует тому, что нужно увеличить модуль напряжения) на сумматор в соответствующий вход поступает высокий уровень и он работает на сложение.

3 Анализ метрологических характеристик

Разработанное устройство полностью соответствует техническим требованиям, изложенным в техническом задании. В устройстве использованы быстродействующие микросхемы (операционный усилитель К140УД7, компаратор КМ597СА3, ЦАП КР572ПА1, регистр 530ИР22).

Устройство обеспечивает работу в необходимом динамическом диапазоне. Диапазон входного напряжения, исходя из способа построения (это подразумевалось при подборе ступени квантования, разрядности счетчика, ЦАП и, в целом, конструируемого АЦП) рассчитан на напряжение до минус 10 В. Входное сопротивление более 1 Мом, благодаря использованию повторителя.

Время преобразования выбрано равное 1 с. обеспечено благодаря выбору тактовой частоты генератора, что соответствует требованиям ТЗ.

В связи с использованием обратной связи устройство работает в автоматическом режиме.

Аддитивная погрешность складывается из суммы аддитивных погрешностей четырех усилителей (вне зависимости от схемы их включения), и аддитивной погрешности ЦАП. Используемые при расчете аддитивной погрешности характеристики приведены в таблице 6. Характеристики прочих звеньев главного круга преобразования не включены, т.к. подразумевается, что цифровые элементы данным видом погрешностью не обладают, а точность компаратора, с которой он может входной и опорный сигнал достаточна велика.

Таблица6 – Характеристики

Параметр Значение
Дрейф напряжения смещения (в усилителях) 6мкВ/С°
Коэффициентом нелинейности для ЦАП (δ) 0,1%

Будем искать погрешности, в том числе аддитивную, для входной величины, равной ступени квантования (в данном случае она максимальна) по формуле 9 из[7]:

(9)

где С — суммарная аддитивная погрешность устройства; δ1, δ2—аддитивные погрешности усилителей и ЦАП соответственно

Мультипликативная погрешность (возникает при изменении коэффициентов преобразования), будет складываться за счет некоторых факторов, таких как точный подбор резисторов в схемах включения усилителей (они обладают своей точностью). Если погрешность, возникающая при этом порядка d=0,05%, то по формуле из [7] получим предел относительной основной погрешности:

(10)

Полученная погрешность носит лишь оценочный характер. Введу сложности устройства, более точно погрешность может быть оценена путем моделирования.

4 Электрическое моделирование

Моделирование схемы проводилось в пакете программ схемотехнического моделирования Micro-Cap 7.0.

В качестве устройства для моделирования было предложено смоделировать работу генератора. В программе MicroCap была создана схема, показанная на рисунке 6.

Данная схема представляет собой простейший кварцевый генератор на микросхемах КМОП Х1 и Х2. На данной схеме вместо кварца был использован импульсный генератор V1.

На рисунке 7 изображен выходной сигнал модели и выходной сигнал

Рисунок 7 – Выходной сигнал модели

На рисунке 8 изображен выходной сигнал в промежутке времени между преобразованиями.

Рисунок 8 – Выходной сигнал в промежутке времени между преобразованиями


Список литературы

  1. Джонс М.Х. Электроника – практический курс. Москва: Постмаркет, 1999 –528 с.
  2. Забродин Ю.С Промышленная электроника: Учебник для вузов. — М.: Высш. школа, 1982. –496 с.
  3. Кончаловский В.Ю. Цифровые измерительные устройства: Учеб. пособие для вузов .—М.:Энергоатомиздат, 1985.—304 с.
  4. Ладик А.И. Сташкевич А.И. Изделия электронной техники. Знакосинтезирующие индикаторы: Справочник.–М.: Радио и Связь, 1994–176 с.
  5. Нефедов А.В. Интегральные микросхемы и их зарубежные аналоги. Справочник. Т.5.–M.:ИП Радиософт, 1999–608 с.
  6. Никонов А.В. Методические аспекты построения цифровых измерительных устройств: Учебное пособие.- Омск: Изд-во ОмГТУ, 2001 – 52
  7. Основы метрологии и электрические измерения: Учебник для вузов / Б.Я. Авдеев, Е.М. Антонюк, Е.М. Душин и др.; Под ред. Е.М.Душина.—6‑е изд., перераб. И доп.—Л.: Энергоатомиздат,1987.—480 с.
  8. Разевиг В.Д. Система схематехнического моделирования Micro-Cap 6 – М.: Горячая линия-Телеком, 2001. –344 с.
  9. Федорков Б.Г., Телец В.А. Микросхемы ЦАП и АЦП: функционирование, параметры, применение. –М.: Энергоатомиздат, 1990.—320 с.
  10. Хоровиц П., Хилл У. Искусство схемотехники: В 2-х т. Е.1. Пер. с анг.–Изд. 3-е, стереотип.–М.: Мир, 1986.–598 c.
  11. Цифровые и аналоговые интегральные микросхемы: Справочник/ С.В.Якубовский, Л.Н.Ниссельсон, В.И. Кулешова и др./ под ред. С.В.Якубовского. –Радио и связь, 1989.—496с.: ил.
  12. Шило В.Л. Популярные цифровые микросхемы: Справочник.—М.: Радио и связь, 1987.—352с.