Содержание
Принцип работы биполярных транзисторов
Поверхностные явления в полупроводниках
В настоящее время невозможно найти какую-либо oтрасль промышленности, в которой не использовались бы электронные приборы или электронные устройства измерительной техники, автоматики и вычислительной техники. Причем тенденция развития такова, что доля электронных информационных устройств и устройств автоматики непрерывно увеличивается. Поэтому современный специалист в области электроники должен знать основные физические принципы и законы, составляющие теоретический фундамент функционирования приборов, устройств и систем, т.е. той техники, творцом которой он призван быть.
Цель контрольной работы - рассмотреть теоретические вопросы, в основном связанные с физическими принципами функционирования электронных приборов и рассмотреть практическое применение теоретических вопросов.
Реальные кристаллы всегда имеют всевозможные дефекты, нарушающие строгую периодичность их структуры и оказывающие сильное влияние практически на все их свойства - электрические, механические, оптические и др. Рассмотрим кратко наиболее важные дефекты кристаллов.
Примеси. Твердые тела сколь угодно высокой степени чистоты всегда содержат примеси. В зависимости от их природы и количества они могут находиться в кристалле или в растворенном состоянии, или в виде более или менее крупных включений. Процесс растворения состоит в том, что примесные атомы внедряются в промежутки между атомами кристалла (рис.1.1, а) или замещают часть этих атомов, размещаясь в узлах решетки (рис.1.1, б). В первом случае твердый раствор называется раствором внедрения, во втором - раствором замещения. Так как чужеродные атомы по своей физической природе и размерам отличаются от атомов основного кристалла, то их присутствие вызывает искажение решетки.
Рис.1.1 Искажение кристаллической решетки в твердых растворах внедрения (а) и замещения (б)
Дефекты по Френкелю и по Шоттки. Распределение энергии между атомами твердого тела, как и между молекулами газа и жидкости, является неравномерным. При любой температуре в кристалле имеются атомы, энергия которых во много раз больше или меньше среднего значения, определяемого температурой кристалла. Атомы, обладающие в данный момент достаточно высокой энергией, могут не только удаляться на значительные расстояния от положений равновесия, но и преодолевать потенциальный барьер, созданный соседними атомами, и переходить в новое окружение, в новую ячейку. Такие атомы приобретают способность как бы "испаряться" из своих узлов и "конденсироваться" в междоузлиях (рис.1.2, а). Этот процесс сопровождается возникновением вакантного узла (вакансии) и атома в междоузлии (дислоцированного атома). Такого рода дефекты решетки называются дефектами по Френкелю.
Помимо внутреннего испарения, возможно полное или частичное испарение атомов с поверхности кристалла. При полном испарении атом покидает поверхность кристалла и переходит в пар, при частичном испарении он с поверхности переходит в положение над поверхностью (рис.1.2, б). В обоих случаях в поверхностном слое кристалла образуется вакансия. Путем замещения глубже лежащим атомом вакансия втягивается внутрь кристалла. Такое образование вакансий не сопровождается одновременным внедрением атомов в междоузлия, т.е. появлением дислоцированных атомов. Такого рода вакансии называют дефектами по Шоттки. Их источником могут быть и всевозможные несовершенства кристалла: недостроенные атомные плоскости, границы блоков и зерен, микроскопические трещины и др.
Рис.1.2 Дефекты по Френкелю (а) и по Шоттки (б)
Равновесная концентрация дефектов в кристалле зависит прежде всего от температуры, так как с ростом температуры увеличивается число атомов, энергия которых оказывается достаточной для преодоления связи с соседями и образования дефекта. В соответствии с законом Больцмана число таких атомов прямо пропорционально ехр ( - U/kT),
где U - энергия образования дефекта;
Т - абсолютная температура кристалла.
Для дефектов по Френкелю число их в кристалле, содержащем N узлов, равно
Nф = ANехр (-Uф/kT), (1.1)
для дефектов по Шоттки
NШ = Nexp (-Uui/kT), (1.2)
где Uф, Uш - энергия образования дефектов по Френкелю и Шоттки; соответственно;
А - число одинаковых междоузлий, приходящееся на один атом решетки.
При образовании дефектов по Френкелю атому, переходящему из узла в междоузлие, необходимо не только разрывать связи с соседними атомами, но и раздвигать их, внедряясь между ними. Это требует затраты значительной энергии и может происходить практически лишь в кристаллах, состоящих из атомов двух сортов, сильно различающихся своими размерами, например в ионных кристаллах NaCl, AgCl, NaBr и др. (ионный радиус Na+ равен 0,095 нм, Ag+ 0,11 нм; ионный же радиус Br - равен 0, 195 нм, С1 - 0,181 нм), а также в твердых растворах внедрения, например в сталях (rFе = 0,126нм, rс = 0,077 нм). В кристаллах же с плотной упаковкой однотипных атомов, например в металлических, дефекты по Френкелю возникать практически не могут и основными являются дефекты по Шоттки. Расчет показывает, что в кристалле меди при Т = 1000° С концентрация вакансий Nm/N≈10-4, концентрация дефектов по Френкелю Nф /N≈ 10-39.
Для рассмотрения принципа работы биполярного транзистора воспользуемся схемой, приведенной на рис.2.1 Из рисунка видно, что транзистор представляет собой по существу два полупроводниковых диода, имеющих одну общую область - базу, причем к эмиттерному р-п переходу приложено напряжение Е1 в прямом (пропускном) направлении, а к коллекторному переходу приложено напряжение Е2 в обратном направлении. Обычно |Е2| " |Е1|. При замыкании выключателей SA1 и SA2 через эмиттерный р-п переход осуществляется инжекция дырок из эмиттера в область базы. Одновременно электроны базы будут проходить в область эмиттера. Следовательно, через эмиттерный переход пойдет ток по следующему пути: + Е1, миллиамперметр РА1, эмиттер, база, миллиамперметр РА2, выключатели SA2 и SA1, - E1.
Рис.2.1 К пояснению принципа работы транзистора
Если выключатель SA1 разомкнуть, а выключатели SA2 и SA3 замкнуть, то в коллекторной цепи пройдет незначительный обратный ток, вызываемый направленным движением не основных носителей заряда - дырок базы и электронов коллектора. Путь тока: +Е2, выключатели SA3 и SA2, миллиамперметр РА2, база, коллектор, миллиамперметр РАЗ, - Е2.
Таким образом, каждый из р-п переходов в отдельности подчиняется тем закономерностям, которые были установлены ранее.
Рассмотрим теперь прохождение токов в цепях транзистора при замыкании всех трех ключей. Как видно из рис.2.2, подключение транзистора к внешним источникам питания приводит к изменению высоты потенциальных барьеров р-п переходов. Потенциальный барьер эмиттерного перехода понижается, а коллекторного - увеличивается.
Рис.2.2 Энергетическая диаграмма включенного транзистора
Ток, проходящий через эмиттерный переход, получил название эмиттерного тока (Iэ). Этот ток равен сумме дырочной и электронной составляющих
Iэ = IэР + Iэn. (2.1)
Если бы концентрация дырок и электронов в базе и эмиттере была одинаковой, то прямой ток через эмиттерный переход создавался бы перемещением одинакового числа дырок и электронов в противоположных направлениях. Но в транзисторах, как было сказано выше, концентрация носителей заряда в базе значительно меньше, чем в эмиттере. Это приводит к тому, что число дырок, инжектированных из эмиттера в базу, во много раз превышает число электронов, движущихся в противоположном направлении. Следовательно, почти весь ток через эмиттерный р-п переход обусловлен дырками. Эффективность эмиттера оценивается коэффициентом инжекции γ,который для транзисторов типа р-п-р равен отношению дырочной составляющей эмиттерного тока к общему току эмиттера:
γ =
= = (7.2)В современных транзисторах коэффициент γ обычно мало отличается от единицы (γ ≈ 0,999).
Инжектированные через эмиттерный переход дырки проникают вглубь базы. В зависимости от механизма прохождения носителей заряда в области базы отличают бездрейфовыеи дрейфовые транзисторы. В бездрейфовых транзисторах перенос неосновных носителей заряда через базовую область осуществляется в основном за счет диффузии. Такие транзисторы обычно получают описанным выше методом сплавления. В дрейфовых транзисторах в области базы путем соответствующего распределения примесей создается внутреннее электрическое поле и перенос неосновных носителей заряда через базу осуществляется в основном за счет дрейфа. Такие транзисторы, как уже отмечалось, обычно получают методом диффузии примесей.