Смекни!
smekni.com

Системы охраны производственного объекта (стр. 8 из 13)

, (1.18)

где

– вектор-строка начального состояния системы;
– квадратная матрица переходных вероятностей;
– вектор-столбец анализируемого состояния, который имеет все нулевые элементы и одну единицу, которая стоит в позиции, соответствующей порядковому номеру анализируемого состояния.

- определяет начальное положение злоумышленника вне помещений объекта информатизации.

В таблице 1.36 представлены вероятности появления злоумышленника в корпусах завода

Таблица 1.37

Вероятности нахождения злоумышленника в корпусах завода

P0 0,867
P1 0,132
P2 0,092
P3 0,092
P4 0,082
P5 0
P6 0

Таким вероятность того что злоумышленник не проникнет на территорию трансформаторного завода равна 0,867, что является достаточно высоким показателем защищенности объекта.

C помощью программного пакета MathCad рассчитываем вероятности нахождения злоумышленника в помещениях

Вероятность нахождения злоумышленника за территорией трансформаторного завода P1(k)


Вероятность нахождения злоумышленника на территории трансформаторного завода P2(k)

Вероятность нахождения злоумышленника в административном корпусе трансформаторного завода P3(k)

Вероятность нахождения злоумышленника в административно-бытовом корпусе трансформаторного завода P4(k)


Вероятность нахождения злоумышленника на КПП P5(k)

Вероятность нахождения злоумышленника на складе трансформаторного завода P6(k)

Вероятность нахождения злоумышленника в производственном корпусе трансформаторного завода P7(k)


1.8 Расчет вероятности безотказной работы подсистем физической защиты

Подсистема видеонаблюдения

Структурная схема для расчета надежности системы пожаротушения приведена на рисунке 1.1 Произведем ее декомпозицию на пять блоков:

- блок 1 – камеры видеонаблюдения;

- блок 2 – инфракрасные прожекторы;

- блок 3 – линии связи, по которым передается сигнал от камер видеонаблюдения на регистратор и монитор

- блок 4 – видеорегистратор;

- блок 5 – монитор.

Рисунок 1.6 – Структурная схема для расчета надежности системы видеонаблюдения

Из опыта известно, что показатели безотказности элементов каждого элемента равны:


(1.20)

– наработка до отказа

- интенсивность отказов

Определим вероятности безотказной работы для каждого блока:

- блок 1:

, поскольку отказ любого комплекта датчиков не приведет к отказу системы;

- блок 2:

;

- блок 3:

;

- блок 4:

;

- блок 5:

.

Вероятность безотказной работы системы видеонаблюдения определяется по формуле 2.3:


С помощью математического пакета Mathcad были получены графики изменения вероятностей безотказной работы в зависимости от времени, равному 1 году

Рисунок 1.7 - Вероятности безотказной работы отдельных блоков и системы в целом

Интенсивность отказов блоков численным методом определяется по соотношению 2.4:

(1.21)

График зависимости интенсивностей отказов от времени для системы видеонаблюдения приведен на рисунке 1.8


Рисунок 1.8 – График зависимости интенсивностей отказов от времени

В результате выяснили, что к концу года эксплуатации вероятность безотказной работы системы видеонаблюдения становится менее 0,4.

Подсистема СКД и охранной сигнализации

Логическая структура СКД и охранной сигнализации представлена на рисунке 1.9

Рисунок 1.9 - Логическая структура СКД и охранной сигнализации

- блок 1 – ИК датчики;

- блок 2 – линии связи, по которым передается сигнал от датчиков на охранную панель;

- блок 3 – охранная панель;

- блок 4 – считыватель;

- блок 5 – линии связи, по которым передается сигнал от считывателя на контроллер СКУД

- блок 6 – контроллер СКУД;

- блок 7 – сервер;

Интенсивность отказов каждого из блоков соответственно равны:

Определим вероятности безотказной работы для каждого блока:

- блок 1:

;

- блок 2:

;

- блок 3:;

- блок 4:

;

- блок 5:

;

- блок 6:

;

- блок 7:

;

Вероятность безотказной работы системы видеонаблюдения определяется по формуле:

График зависимости вероятности безотказной работы от времени для подсистемы СКД и сигнализации представлен на рисунке 1.10

Рисунок 1.10 - Вероятности безотказной работы отдельных блоков и системы в целом

График зависимости интенсивностей отказов от времени для системы СКД и сигнализации приведен на 1.11

Рисунок 1.11 – График зависимости интенсивностей отказов от времени

Вероятность безотказной работы в конце года использования системы СКД и охранной сигнализации равна 0.764

2 СПЕЦИАЛЬНАЯ ЧАСТЬ

2.1 Общие сведения о программном продукте LyriX

Программный комплекс LyriX является интеллектуальной основой современной интегрированной системы безопасности. Его назначение - организация эффективного взаимодействия между различными подсистемами ИСБ и управление ими. LyriX - это программный комплекс с удобным настраиваемым интерфейсом, сочетающий в себе надежностью гибкостью, масштабируемой архитектуре. Программный комплекс LyriX является распределенной системой.

Программный комплекс LyriХпозволяет строить крупные многофункциональные интегрированные системы безопасности крупных и средних предприятий. Особенно эффективно его применение на таких объектах, как заводы, аэропорты, банки, офисы крупных компаний, институтов и любые другие объекты, на которых требуется мощная централизованная система доступа, охраны и мониторинга систем безопасности. Благодаря архитектуре программный комплекс LyriХ и используемым при его разработке технологиям, он может функционировать практически на любой платформе и управлять системой, построенной на базе оборудования практически любого производителя.

С точки зрения архитектуры в программном комплексе LyriX можно выделить следующие модули:

Консоль - визуальная оболочка, интерфейс, позволяющий пользователю общаться с системой, то есть конфигурировать, управлять объектами и оборудованием, а также получать сообщения от системы, наблюдать ее общее состояние;