С=Сi×Cd/( Сi+Cd) (Ф/см2).
Високочастотна вольт-фарадна залежність МОН-структури, в яку не входить
ємність поверхневих станів Сs зображена на рис.2.2 штриховою лінією. Але і в цьому випадку поверхневі стани впливають на форму вольт-фарадної характеристики, зсовуючи ї вздовж осі напруг. При наявності зв'язаного поверхневого заряду вимагається відповідне збільшення заряду на металі.
По формі високочастотної вольт-фарадної залежності густина поверхневих станів визначаеться за допомогою виразу:
Dit=Ci[(dBs/dV)-1-1]/q-Cd/q (см/еВ)
Фіксований заряд в окислі Qf (звичайно додатній) розміщений на відстані ~3 нм від межі розділу Si-SiO2. Він не може збільшуватись або зменшуватись. Густина його знаходитьcя в діапазоні від 1010 до 1012 см-2 та залежить від режиму окислення і умов відпалу, а також від орієнтації підкладки. Виникнення Qf пов'язане безпосередньо з самим процесом окислення.
Рис. 1.2.3. Зміна С-V-кривих під впливом заряджених поверхневих станів.
Рис. 1.2.4. Зсув С-V-кривих вздовж осі напруг, зумовлений
додатнім або від'ємним фіксованим зарядом оксиду:
а) для напівпровідника р-типу;
б) для напівпровідника n-типу.
Припускається, що фіксований заряд Qf зумовлений або надлишковим (тривалентним) кремнієм, або надлишковим (не зв'язаним із загубленим одним електроном) киснем в приповерхневому шарі SiO2 . При аналізі електричних характеристик МОН-структур фіксований заряд Qf можна розглядати як заряджений шар, локалізований на межі розділу Si-SiO2.
На рис.1.2.4 приведені високочастотні вольт-фарадні залежності, зсунуті вздовж осі напруг в результаті наявності додатнього або від'ємного фіксованого заряду Qf на межі розділу. Положення цих кривих характеризує так званий зсув напруги плоских зон, визначеннй по відношенню до С-V -характеристики ідеальної МДН-структури з Qf =0.
Незалежно від типу провідності підкладки позитивний заряд Qf зсуває С-V-характеристику в бік від'ємних напруг зміщення, а від'ємний заряд Qf - в бік додатніх.
Характер впливу фіксованого заряду Qf на С - V -характеристики можна легко пояснити за допомогою рис. 1.2.5., де умовно показаний "поперечний переріз" МОН-структури з позитивним Qf при негативній напрузі зміщення.
Для повної електронейтральності структури необхідно, щоб кожний від'ємний заряд на ії металічному електроді компенсувався рівним за величиною та протилежним за знаком зарядом в діелектрику або в напівпровіднику. В ідеальній МДН-структурі Qf = О, та ця компенсація здійснюється тільки за рахунок заряду іонізованих донорів в збідненому шарі напівпровідника. В реальній МОН-структурі з позитивним Qf частина зарядів на металічному електроді компенсується фіксованим зарядом окисла, що приводить до відповідного зменшення глибини області збіднення в порівнянні з ідеальною.
МДН-структурою при цій же напрузі зміщення. Оскільки глибина області збіднення зменшується, вся С - V -крива зсувається по відношенню до ідеальної в бік від'ємних напруг при від'ємних Qf С -V - в протилежному напрямку. Абсолютна величина цього зсуву:
D Vf=Qf/Ci.
Заряд, захоплений в шарі окислу, Q0t, приводить до зсуву С-V-характсристик МОН-структур. Цей заряд зумовлений структурними дефектами в шарі окислу. Пастки в окислі, як правило, нейтральні, але можуть заряджатися, захоплюючи електрони та дірки. На рис. 1.2.6 зображена зонна діаграма розподілу заряду, електричного поля та потенціалу в МОН-структурі, що містить як фісований заряд, так і заряд, захоплений в окислі. Зсув напруги, зумовлений зарядом, захопленим в окислі, записується у вигляді:
DV0t=Q0t/Ci=1/ Ci[1/d
xr0t(x)dx],Рис. 1.2.5. Вплив фіксованого заряду окислу на властавості МДН-структур.
Рис. 1.2.6. МДН-структура з фіксованимта захопленим в оксиді зарядами:
а) зонна діаграма;
б) розподіл заряду;
в) електричне поле;
г) потенціал.
Де Q0t - ефективна поверхнева густина цього заряду, приведена до одиниці площі межі розподілу Si-SiO2; r0t - істинна об'ємна густина заряду, захопленого в окислі.
Результуючий зсув напруги плоских зон DVfb, зумовлений всіма компонентами зарфду в окислі:
DVfb=DVf+DVm+DV0t=Q0/Ci,
де Q0= Qf+ Qm+ Q0t - сума відповідних ефективних зарядів на одиницю площі розподілу Si-SiO2.
В ідеальній МДН-структурі різниця роботи виходу електрона з металу і напівпровідника дорівнює 0:
jms=jm-(x+Eg/2q-yb).
Якщо ця різниця відмінна від 0, а крім того, в діелектрику МДН-структури присутній заряд Q0, С-V-характеристики реальної МДН-структури будуть зсунуті вздовж осі напруг відносно ідеальної С -V -кривої на величину:
Vfb=jms- Q0/Сi=jms-( Qf+ Qm+ Q0t)/Ci,
що називається зсувом напруги плоских зон.
Встановлено, що ширина забороненої зони SiO2 приблизно дорівнює 9 еВ, а спорідненість до електрону qXi=0.9 еВ. Робота виходу з металу в МОН-структурах |звичайно визначається за результатами фотовідклику або вольт-фарадних характерик.
Висота енергетичного бар'єру на межі Si-SiO2 практично не залежить від кристалічної орієнтації підкладки (в межах похибки 0.1еВ)
Різниця робіт виходу ms може складати відчутну міру спостережуваного зсуву напруг плоских зон МОН-структури, і тому її необхідно враховувати при оцінках величини фіксованого заряду окисла за зсувом С-V -характеристик.
1.3. ГЕТЕРУВАННЯ ДЕФЕКТІВ В ТЕХНОЛОГІЇ НАПІВПРОВІДНИКОМ ВИХПРИЛАДІВ.
Однією з найважливіших задач напівпровідникової електроніки є забезпечення високої міри чистоти та досконалості кристалічної структури напівпровідникових матеріалів, що використовують для виробництва дискретних приладів та інтегральних мікросхем.
Сучасна технология забезпечує отримання практично бездислокаційних монокристалів напівпровідників. Але при цьому різко зростає роль точкових дефектів-вакансій, домішкових атомів та їх кластерів. При відсутності дислокацій, що є стоком для точкових дефектів, в ході технологічного процесу виготовлення приладів відбувається постійне збільшення концентрації вакансій та небажаних домішок натрію, калію, міді, золота та ін., в напівпровідниковому матеріалі. Наявність точкових дефектів і їх кластерів приводить до погіршення характеристик напівпровідникового матеріалу, деградації параметрів приладів, сприяє утворенню структурних дефектів при термічній обробці.
Для уникнення небажаного впливу точкових дефектів розроблені методи, що дозволяють нагромаджувати їх в неробочих ділянках пластин або взагалі виводити їх з пластин напівпровідника. Процес виводу та дезактивації дефектів прийнято називати гетеруванням. Цей термін вперше введений Готцбергом і Шоклі по аналогії з геттером в вакуумних лампах, що використовується для зняття слідів залишкових газів при отриманні високого вакууму. В застосуванні до напівпровідникової технології під гетеруванням розуміють:
• очистку об'єму напівпровідника від швидкодифундуючих домішок;
• попередження утворення центрів зародження структурних дефектів;
• скорочення раніше утворених структурних дефектів шляхом спрямованого руху точкових дефектів.
Для гетерування дефектів необхідно забезпечити рухливість точкових дефектів, звідси будь-який метод гетерування включає термообробку, температура та тривалість якої достатні для дифузії точкових дефектів із областей пластини, де формуються прилади, в область гетера. Існуючі методи можуть бути умовно розділені на три основні групи, в яких гетерування здійснюється за допомогою:
• шару напівпровідникового матеріалу з порушеною кристалічною структурою;
• нанесеного гетеруючого шару;
• термообробки в спеціальному середовищі.
Одним з методів термообробки в спеціальному середовищі є термічне окислення кремнію в хлормісткому середовищі,
Відомо, що додавання незначної кількості (0.1%...6%) хлору або його сполук в окислюючу атмосферу приводить до зменшення заряду і дефектів в окислі, зниженню густини поверхневих станів на межі поділу кремній-діоксид кремнію, підвищенню пробивної напруги та стабільності МОН-струкгур і т.ін.
Крім покращення властивості окислу при “хлорному" окисленні відбувається значне покращення властивостей кремнію, на декілька порядків зростає час життя неосновних носіїв, зменшується кількість дефектів пакування, покращуються параметри напівровідникових приладів.
Вивчення механізму гетерування при "хлорному" окисленні засвідчило, що покращення параметрів кремнію та виготовлених з нього приладів пов'язане з нейтралізацією небажаного впливу домішок лужних, перехідних та важких металів, які, взаємодіючи з хлором, або вилучаються з поверхні кремнію у вигляді летючих сполук, або перетворюються в нейтральні комплекси, що вже не впливають на характеристики приладів. Домішки золота та металів платинової групи важко гетеруються хлормісткою атмосферою, що, напевно, пов'язано з термодинамічною нестабільністю хлоридів при високих температурах.