Застосування хлору та хлористого водню при термічному окисленні ускладнюється через високу реакційну здатність цих реагентів. Тому досліджувалась можливість їх заміни іншими, менш хімічно активними газами, наприклад трихлоретаном, чотирихлористим вуглецем, трихлоретиленом, що за своєю дією на окисел подібні до хлору або хлористого вуглецю. Найефективнішими та безпечними в експлуатації є трихлоретан та трихлоретилен. На рис.1.3.1. показана схема установки для окислення пластин з використанням трихлоретилену. При високій температурі трихлоретилен розпадається з утворенням цілого ряду продуктів:
4С2HCl3+9O2× 2Н2О+6Сl2+8CO2
2H2O+2Cl2×4HCl+O2
Наявність води в продуктах піролізу трихлоретилену приводить до збільшенняшвидкості росту окислу, а присутність хлору і хлористого водню забезпечує гетерування домішок металів.
Експериментально встановлено, що окислення з добавками трихлоретилену покращує параметри МОН-структури, знижує струми втрат діодів, зменшує густину та розмір окислювальних дефектів пакування, причому збільшення концентрації трихлоретилену приводить до зменшення розмірів дефектів пакування, особливо помітному при високій температурі окислення
Рис. 1.3.1. Схема установки термічного окислення кремнієвих пластин:
1 -пластини; 2-барботер; 3 - термостат; 4 - реакційна камера.
(рис. 1.3.2). При певному співвідношенні температури окислення та концентрації трихлорстилену можна повністю уникнути появи утворення окислювальних дефектів пакування (рис. 1.3.3.).
Додавання невеликої кількості трихлоретилену дозволяє погасити утворення окислювальних дефектів пакування не лише в процесі "хлорного" окислення, а й при наступному звичайному окисленні в сухому кисні після зняття "хлорного" окислу. Це безпосередньо вказує на те, що в процесі обробки в хлормісткому середовищі відбувається гетерування центрів зародження дефектів пакування.
Одним із методів гетерування дефектів в плівках SiO2 на поверхні кремнієвої пластини є введення в ядра дислокацій домішкових атомів, що гальмують рух дислокацій під дією термомеханічних навантажень в процесі росту оксидної плівки. В цьому випадку незавершені зв'язки дислокацій та підкладки заповнюються валентними електронами домішкових атомів, в результаті чого зменшується рухливість дислокацій та гальмується один із механізмів утворення пор в плівках SiO2.
Рис. 1.3.2. Залежність розмірів окислюваних дефектів упаковки від витрат азоту, який пропускають через барботер з трихлоретиленом:
1 - температура окислення 1373 К, тривалість окислення 1 год.;
2 - температура окислення 1373 К, тривалість окислення 2 год.;
3 - температура окислення 1473 К, тривалість окислення 15 хв.;
4 - температура окислення 1473 К» тривалість окислення 1 год.
Рис. 1.3.3, Залежність температури окислення, при якій відсутні окислювані дефекти упаковки, від співвідношення концентрацій трихлоретилену та кисню в окислюваній атмосфері.
Висновки та постановка завдань досліджень.
Сучасний рівень щільності пакування елементів ІС вимагає високої суцільності плівок у взаємозв'язку з необхідними електрофізичними параметрами елементів та їх стабільнісію. Це вимагає розробки нових і вдосконалення відомих технологічних процесів виготовлення ІС, які дозволили б забезпечити; необхідний рівень Їх якості. Зокрема, як видно з літературного огляду, один з напрямків вказаних робіт - це розробка і всестороннє дослідження методів гетерування дефектів матеріалів електронної техніки, які є складовими частинами ВІС.
Методи домішкового гетерування на сьогодні є на стадії досліджень і апробацій, хоча перші відомі з літератури результати вказують на їх перспективу при використанні в області технології мікроелектроніки. Однак, впровадження їх у виробництво неможливе без оптимізаціі параметрів технологічного процесу за багатьма факторами, до складу яких входять: суцільність плівок, параметри ОПЗ, межі розділу діелсктрик-напівпровідник, зарядових характеристик діелектрика і вивчення впливу на них зовнішніх умов які можуть проявлятися при роботі приладів. До них відносяться термопольові і радіаційні навантаження структур.
Метою даної роботи е оптимізація процесу домішкового гетерування дефектів плівок термічного діоксиду кремнію та встановлення області концентрації домішки, яка забезпечила б його найефективніше використання.
Для досліджень найкраще вибрати традиційні методи руйнуючого та неруйнуючого контролю параметрів МДН-структур, які пройшли широку апробацію не тільки в наукових установах, але й на підприємствах електронної техніки. Це, зокрема, відомі методи дослідження суцільності плівок і дислокаційної структури підкладки, вольт-фарадний та ємнісно-часовий методи дослідження електрофізичних характеристик, як діелектрика, так і межі розділу. Безумовно, достовірність результатів досліджень підтвердили б дослідження параметрів структур після радіаційно-термічної обробки, які дозволили б суттєво скоротити час оптимізащї технологічного процесу.
Завданням даного дипломного проекту є вивчення вище згаданими методами впливу легування діелектрика і межі розділу на характеристики МОН-структур для з’ясування можливостей їх покращення.
Завдання досліджень дипломного проекту :
1. Вивчити та засвоїти технологію одержання МОН-структур з легуванням в процесі росту;
2. Опанувати методи вимірювання вольт-фарадних і фарадно-часових характеритик та розрахунку за ними основних параметрів МОН-структур;
3. Вивчити вплив легування на характеристики структур;
4. Зробити висновки за отриманими результатами і оцінити можливість практичного використання структур з легованим діелектриком.
2. Методика експерименту
2.1. Методика вирощування плівок термічного SiO2 з одночасним легуванням в процесі росту.
Плівки диоксиду кремнію вирощували в стандартній проточній системі схема якої приведена на рис.2.
У цій установці передбачено окислення кремнієвих пластин, як за стандартною технологією в атмосфері сухого кисню та водяної пари, так і окислення в середовищах, що містять домішки хлору та хлоридів, що, в свою чергу, дозволяє легувати плівки диоксиду кремнію в процесі росту. Для легування плівок під час процесу “вологого” окислення попередньо готувався розчин хлориду цинку в деіонізованій воді і заливався у барботер. Барботування проводили киснем з витратою 200 л/хв, за рахунок чого в парогазове окислювальне середовище потрапляв як окислювач, так і домішка. Однак, як показали дослідження, в процесі барботування концентрація вихідного розчину змінюється за рахунок різної швидкості випаровування розчинника та складових (іонів) розчиненої солі [10].
Навіть приготування вихідного розчину ZnCl2 в деіонізованій воді має свої особливості. Незважаючи на високу гігроскопічність солі, в процесі гідролізу хлориду цинку спостерігається помутніння розчину, виділення нерозчинного осаду, який знаходиться у зваженому стані. Після фільтрування розчину ми провели цикл досліджень його складу використовуючи для визначення концентрації іонів цинку комплексометричний метод [11], а для визначення концентрації іонів хлору аргентометричний метод [12]. З’ясовано, що для повного розчинення солі і отримання гомогенного прозорого розчину необхідно, щоб молярне співвідношення іонів хлору до іонів цинку складало 1,012. Вказане співвідношення зберігалося для діапазону концентрацій ZnCl2 до 5% маси.
Тому доцільніше використовувати метод миттєвого випаровування, що полягає в подачі в реактор попередньо підготованого розчину та випаровування його в буферному циліндрі. Температуру буферного циліндра вибирали значно вищою від температури кипіння як води, так і хлориду цинку, а теплоємність його суттєво перевищувала теплоємність розчину, що подається через капіляр. Тому випаровування проходить миттєво і його склад відповідає складу газової фази у реакторі.
При отриманні легованих плівок диоксиду кремнію в середовищі сухого кисню, у буферний циліндр поміщали наважку попередньо розрахованої маси оксиду цинку. В реактор подавалась суміш кисню та хлориду водню. Хлорид водню взаємодіяв з оксидом цинку за реакцією:
2HCl+ZnO=ZnCl2+H2O
Температура зони, в яку поміщалась наважка, обиралась вищою від температури кипіння хлориду цинку, тому продукти реакції були газами при температурах технологічного процесу. Таким чином, процес окислення відбувався з одночасним легуванням плівки диоксиду кремнію введеною в реактор домішкою.
Температуру процесу окислення обирали та підтримували за допомогою блоку регулювання та підтримування температур, яке здійснювалося пропорційним інтегрально-диференціальним регулятором. Процес завантаження-вивантаження пластин в реактор тривав не менше 5 хвилин для уникнення термоударів пластин та генерації при цьому дислокацій за рахунок термомеханічних навантажень.
1-крани; 9-буферний циліндр;
2-витратоміри; 10-вхідний патрубок з капіляром;
3-трубопроводи; 11-човник з Si-пластинами;
4-барботер; 12-блок живлення та регулювання
5-термостат; температури;
6-парогенератор; 13-пристрій вводу-виводу пластин;
7-нагрівач; 14-пристрій керування;
8-реактор; 15-завантажувальна камера.
2.2. Визначення параметрів технологічного процесу.
Для проведення досліджень параметрів структур Si-SiO2 необхідно отримати плівки заданої товщини, яка співрозмірна з товщиною діелектрика напівпровідникових приладів. Оптимізацію ефективності процесу гетерування необхідно проводити шляхом вивчення впливу концентрації легуючої домішки на параметри структур.