Підсилена і випрямлена напруга, пропорційна Свч реєструється по координаті “Y” двокоординатного самописця. Зміщення Uc, яке повільно змінюється, через роздільний резистор (R2>>1/wCcвч) подається на МДН-структуру і координату “Х” самописця. В результаті двокоординатний самописець фіксує ВФХ досліджуваної структури.
Високочастотна напруга на МДН-структурі Свч повинна забезпечувати малосигнальний режим і відповідно задовольняти співвідношенню Uc<<kT/q у всьому діапазоні Uc. При записі ВФХ МДН-структура повинна перебувати в темноті для уникнення фотоефекту.
При зніманні ВФХ доцільно застосовувати таку послідовність операцій: до МДН-структури прикладається напруга зміщення, яка відповідає глибокій інверсії; освітлюється МДН-структура для збільшення генерації неосновних носіїв і утворення рівноважного шару (часто буває достатньо використання звичайного лабораторного освітлення); потім МДН-структура повністю затемнюється, і напруга зміщення починає змінюватись від інверсії до збагачення, при цьому на самописці фіксується рівноважна високочастотна ВФХ.
Іншим варіантом ФВХ є диференціальний високочастотний вольт-фарадний метод. При аналізі високочастотного вольт-фарадного методу зазначалося, що для визначення густини поверхневих станів необхідно порівнювати нахили експериментальної і теоретичної високочастотних ВФХ. Це означає графічне диференціювання експериментальної кривої. Зручніше проводити диференціювання експериментальної ВФХ апаратурним методом. Для цього в установку зйомки ВФХ додатково вводять диференціюючу ланку [11]. При використанні зміщення Uc=at, яке лінійно змінюється, диференціююча ланка на виході забезпечує сигнал, пропорційний dC/dU, який записується на самописці одночасно з записом ВФХ. Розшифровка залежностей С(V) відбувається аналогічно до розшифровки високочастотних ВФХ. Перевага цього методу полягає в більшій швидкодії і підвищенні точності в порівнянні з вольт-фарадним методом. [17]
Блок-схема установки для дослідження МДН-структур приведена на рис. 5.3. при вимірюванні С(V) і G(V) залежностей (П1 – в положенні “1”, П2 – в положенні “2”) на структуру подаються два сигнали: малий синусоїдальний від генератора (2) і напругу зміщення з генератора пилоподібної напруги (КГТН) (4). Сигнал з виходу інтегруючого (ІП)( 8) або диференціюючого (ДП) (9) підсилювача подається на вхід широкополосного (10) або вибіркового (11) підсилювача і далі на фазовий (ФД) (12) або амплітудний (АД) (13) детектор. На вхід “2” ФД подається опорний сигнал з генератора (2). Встановлення фази сигналу на вході “1” ФД створюється незначним розладнанням підсилювача (11). Напруга з виходу ФД (VG) і АД (VC) подається на входи “Y” двокоординатних самописців (6) і (7). На входи “Х” самописців поступає напруга з виходу КГТН.
При вимірюванні С(t) залежностей (П1, П2 і П3 в положенні “2”) на структуру подається стрибок напруги або послідовність імпульсів з формувача (3). Вихідний сигнал КГТН при дослідженні повільних процесів використовується для часової розгортки самописців. Для реєстрації процесів з часами релаксації 0.3 с використовується осцилограф (14).
Градуювання С(V), G(V), i C(t) – залежностей проводиться магазином ємностей і провідностей (П2 в положенні “1”). Установка дозволяє проводити експрес вимірювання параметрів, та досліджувати їх неоднорідності.
Рис.2.4.3. Блок-схема установкт для вимірювання C(V), G(V) та С(t)-характеристик:
1 – магазин ємностей та провідностей;
9 – диференціюючий підсилювач;
3 – генератор;
4 10 – широкосмуговий підсилювач;
3 – формувач;
11 – вибірковий підсилювач;
5 – керуючий генератор трикутної напруги;
6 12 – фазовий детектор;
5 – МОН-структура;
13 – амплітудний детектор;
7 – двокоординатний самописець;
8 14 – осцилограф;
7 – двокоординатний самописець
15 – вимірювач температури.
8 – інтегральний підсилювач;
3. Результати досліджень.
3.1. Дослідження пористості плівок термічного диоксиду кремнію.
Дефектами плівок диоксиду кремнію вважають порушення однорідності аморфного шару [23]. До їх числа відносяться включення іншої фази: пори і кристалічні ділянки. Густина структурних дефектів визначає вихід виробів електронної техніки, особливо ВІС високого ступеня інтеграції, тому розробка способів виявлення дефектів і вивчення механізмів дефектоутворення привертала увагу ряду дослідників. Для їх дослідження розроблено ряд методів, описаних в огляді, та роботах [19,20].
Літературні дані про природу пороутворення часто носять дискусійний характер. Переважно їх появу пов’язують з неконтрольованим забрудненням поверхні кремнієвої пластини до і в процесі росту плівки оксиду. Це викликало необхідність проведення циклу експериментальних досліджень пористості плівок для встановлення механізмів їх утворення.
Плівки SiO2 товщиною від 0.1 до 0.6 мкм вирощували в стандартних процесах термічного окислення кремнієвих пластин в середовищі сухого і вологого кисню. Дефектність плівок визначали шляхом металографічних досліджень під мікроскопом NU-2E після візуалізації пор бульбашками желатину при електролізі водного розчину CuSO4 і желатину (250 : 5 : 5) і шляхом селективного травлення поверхні плівок в травнику складу HF : HNO3 : CH3COOH (1 : 10 : 1) протягом 3...7 хвилин. Селективне тралення плівки оксиду проводили аж до підтравлювання підкладки, після чого знімали плівку в розчині HF і виявляли дислокації поверхні кремнієвих пластин в травнику Сіртля.
Рис. 3.2.1. Неоднорідності візуалізації пор, обумовлені їх різними розмірами (металографія, x 200)
При дослідженні пористості плівок мідножелатиновим методом, як видно з рис.3.2.1., в місцях провідних ділянок плівок виростали або желатинові грона, або бульбашки желатину значно меншого розміру. Це обумовлено суттєвою різницею швидкості процесу електролізу в різних провідних ділянках плівки викликану різними розмірами пор, що вказує на наявність щонайменше двох механізмів процесу пороутворення. Як правило, желатинові грона хаотично розміщалися по поверхні пластини і спостерігалися по подряпинах плівки. Встановлено взаємозв’язок густини “великих” пор від запиленості технологічного приміщення в якому перебували пластини після передокислювальної хімічної обробки. При запиленості в межах 4...30 л-1 їх густина в плівках SiO2 товщиною 0,1 мкм складала 0,5...2 см-2 і зменшувалась з ростом товщини плівки. В той же час, порушення норм запиленості, або спеціальна, навіть короткочасна, витримка пластин в середовищі з запиленістю до 300 л-1 приводила до різкого росту дефектності плівок до 102...103 см-2. В той же час, при ретельному контролі та дотриманні чистоти технологічного приміщення “великі” пори практично не проявлялися.
При дослідженні плівок SiO2, препарованих за методикою [24], шляхом просвічуючої електронної мікроскопії на МВ-100 встановлено, що розміри “великих” пор співрозмірні з товщиною плівки [24].
Виходячи з приведених результатів, механізм утворення наскрізної пори можна подати таким чином: при згоранні або випаровуванні речовини пилинки чи інших неконтрольованих забруднень кремнієвої підкладки при температурі окислення тиск пари в хмаринці домішок може досягнути критичної величини, достатньої для локального руйнування плівки оксиду. Аналогічний механізм пороутворення може проявлятися при випаровування преципітатів як легуючих, так і неконтрольованих домішок, сконцентрованих на структурних порушеннях кремнієвої підкладки.
Що стосується “дрібних” пор, то їх густина, усереднена на пластину, складала 1,5...3, 3,4...5,5 і 6,5...15 cм-2 для плівок термічного диоксиду кремнію товщиною 1, 0,5 і 0,15 мкм відповідно. Виявлена тенденція зменшення густини пор від краю до центру пластини. Причому, біля 80% пор розміщалися по її периметру в області до 7...12 мм від краю. Характерно, що густина пор в цій області майже на порядок вища, ніж в центрі. Скупчення пор (рис.3.2.2) проявлялися також в місцях контакту пластини з кварцовим човником і в значній мірі визначалися щільністю входження пластини в його пази.
Рис.3.2.2. Вид поверхні пластини після візуалізації пор (x200, металографія)
Як правило, по декілька пор розміщалися в ряд, причому лінії їх утворення відповідали кристалографічним лініям ковзання дислокацій. Різко неоднорідний розподіл пор в плівках SiO2, який відображає дефектоутворення в кремнієвих підкладках і свідчить про тісний взаємозв’язок умов росту плівки з дефектоутворенням в кремнію, яке проявляється в конкретному циклі дифузійно-окислювальних процесів спостерігали також в [9].
Ідентичність якісного радіального розподілу дефектів в плівках SiO2 і кремнієвих підкладках підтверджена послідовними дослідженнями розподілу пор та дислокацій вздовж фіксованих смуг шириною 5 мм вздовж діаметра пластини. Однак, в кількісному відношенні, густина пор в плівках значно нижча від густини дислокацій, які виходять на поверхню підкладки. Це вказує на те, що далеко не кожна дислокація є ініціатором пороутворення в вирощуваній плівці термічного SiO2.
3.2. Взаємозв’язок структурної досконалості монокристалічної кремнієвої підкладки і плівок SiO2.