Процесс наложения оболочки на одномодовые волокна
Стоимость оболочки составляет существенную часть стоимости волокна и в принципе не оказывает влияния на характеристики оптического волокна. Широко распространены следующие методы наложения оболочки: OVD Clad (метод наружного парофазного осаждения), APVD (Plasma) (усовершенствованный плазменный метод химического парофазного осаждения), и жакетирование по RIT или RIC технологиям (соответственно методы «стержень в трубке» или «стержень в цилиндре»). Далее представлен новый процесс наложения оболочки с использованием технологии наращивания оптической оболочки путем засыпки кварцевой крошки SAND (SCT), недавно разработанный компаниями Silitec / Nextrom.
Наложение оболочки методом OVD
Метод наружного парофазного осаждения (OVD) оболочки представляет собой процесс гидролиза в пламени, заключающийся в осаждении частиц мелкодисперсного порошка двуокиси кремния SiO2 на стержне сердцевины и спекания порошка для получения сплошной стеклянной заготовки. Это самый распространенный метод наложения оболочки
Рис. 5. Горизонтальный двухшпиндельный станок для наложения оптической оболочки методом OVD
Рис. 6. Вертикальный станок для наложения оптической оболочки методом OVD
Производительность процесса в основном определяется скоростью осаждения, эффективностью осаждения и достижимым размером заготовки (длина и диаметр). В последнее время скорость осаждения постоянно повышается поставщиками оборудования. Вначале скорость осаждения составляла от 15 до 20 г/мин на одношпиндельных станках. Компания Nextrom в 2004 году выпустила двух-шпиндельный станок с тремя горелками производительностью 54 г/мин для заготовок массой до 30 кг.
В 2008 году компания Nextrom выпустила вертикальный станок с 6 горелками производительностью около 50 г/мин для заготовок массой до 60 кг.
Наложение оболочки методом APVD
Усовершенствованный плазменный метод химического парофазного осаждения (APVD) представляет собой запатентованный компанией Draka процесс, заключающийся в осаждении природного кварцевого песка на стержень сердцевины оптического волокна при помощи плазменной горелки и наращивании стекла слой за слоем. Технология совершенствовалась с целью увеличения диаметра заготовки и сокращения загрязнения примесями, содержащимися в природном кварце.
Технологический метод изготовления заготовок RIC/RIT («стержень в трубе»/«стержень в цилиндре»)
Методы RIC/RIT «стержень в трубе» и «стержень в цилиндре» представляют собой простейший процесс наложения оболочки, который заключается во введении стержня для изготовления сердцевины внутрь трубки из материала высокой чистоты производства компаний Heraeus или General Electric. Самостоятельный процесс введения стержня в трубку осуществляется на отдельном горизонтальном или вертикальном станке, но более распространен способ введения стержня в трубку, производимый на башне для вытяжки волокна. Стержень (стержни) для изготовления сердцевины вставляются внутрь трубки или цилиндра, после чего происходит непосредственная вытяжка волокна. Компания Heraeus усовершенствовала данную технологию с целью снижения затрат на материалы и повышения производительности. Усовершенствование технологии привело к использованию цилиндров диаметром от 120 мм до 200 мм и длиной до 3 м. Потребовались очень большие печи для башен для вытяжки волокна или большие станки для жаке-тирования. Компания Nextrom внедрила в 2008 году свои собственные графитовые индукционные печи для заготовок размером 150 мм
Рис. 7. Печь для вытяжки волокна из заготовок размером 150 мм |
Новая SAND технология наложения оптической оболочки путем засыпки кварцевого песка (SCT)
Компания Silitec Fibers разработала новую универсальную и экономически эффективную технологию наложения оболочки оптического волокна. Этот процесс заключается в том, что кварцевый песок плавится вокруг стержня для изготовления сердцевины с помощью печи [1].
Рис. 8. Вытяжка заготовки, изготовленной по технологии SAND
Конструкция, состоящая из сердцевины, окруженной большой тонкостенной трубой, заполняется кварцевым песком (рис. 9 а). Затем песок плавится и превращается в стекло либо непосредственно в процессе вытяжки, либо на расположенном отдельно вертикальном станке (рис. 9 в). Последний вариант позволяет использовать более дешевые трубы для оболочек, которые могут быть отшлифованы до процесса вытяжки.
Рис. 9. Этапы процесса плавки кварцевого песка
Кварцевый песок существует в различных формах: золь-гель, крошка синтетических кристаллов, мелкодисперсный кварцевый порошок. Этот процесс относительно прост и требует наличия только ограниченной инфраструктуры, то есть не требует скрубберов. Компания Silitec Fibers использует этот процесс в неавтономном варианте с 2004 года и в автономном варианте – с 2008 года
Процесс вытяжки
одномодовых оптических волокон
Качество процесса вытяжки зависит главным образом от конструкции печи, технологии наложения оболочки и оптимального контроля параметров процесса, таких как натяжение, температура, диаметры, скорость. Снижение расходов на процесс вытяжки достигается за счет повышения производительности, то есть увеличения производственной скорости, сокращения времени наладки и запуска оборудования, времени линейного нарастания скорости, повышения качества намотки, увеличения размера заготовок (длины и диаметра), а также за счет увеличения количества произведенного продукта, то есть сокращения отходов при начале и окончании работы, обрывов заготовки при вытяжке, снижения индуцируемого вытяжкой затухания и сокращения обрывов волокна при контроле качества в процессе вытяжки.
Увеличение размера заготовок несколько осложняет их транспортировку и обращение с ними. Если обращение с заготовками длиной 1 м и диаметром 100 мм не вызывает особых проблем, то манипулировать заготовками диаметром более 150 мм и длиной 3 м намного сложнее. Кроме того, энергопотребление при плавке больших заготовок существенно выше, чем при работе с заготовками меньших размеров. При выборе оптимального размера заготовок требуется найти компромиссное решение. За более чем 20-летний период развития технологии вытяжки волокна компания Nextrom разработала ряд новых технологических решений. К последним нововведениям относятся следующие:
• скорость вытяжки увеличена до 1800 м/мин и выше благодаря использованию фильер для нанесения влажного покрытия поверх нижнего влажного слоя;
• графитовая индукционная печь для заготовок диаметром более 150 мм с оптимизированной системой контроля расхода газа;
• автоматические сдвоенные приемные устройства для очень больших катушек (до 1000 км волокна на одной катушке).
Рис. 10. Автоматическое сдвоенное приемное устройство для катушек массой 100 кг, DFT100 |
Обзор технологий изготовления оптических
волокон и инновационные решения в области
производства волокон специального назначения
Оптические волокна специального назначения имеют широкий диапазон конструкций и областей применения, включая одномодовые волокна (с выбранной длиной волны отсечки), многомодовые волокна с градиентным показателем преломления, многомодовые волокна со ступенчатым показателем преломления, волокна с сохранением поляризации, легированные волокна для усилителей или лазеров, с одинарной или двойной оболочкой, микроструктурированные волокна со сплошной сердцевиной (PCF – фотонокри-сталлические), брэгговские волокна с полой сердцевиной
Изготовление заготовок сердцевины для волокон специального назначения
При производстве оптических волокон специального назначения применяются все известные методы изготовления сердцевины, однако некоторые технологии обеспечивают достижение лучших характеристик для волокон определенных конструкций. При сложном профиле показателя преломления методы послойного осаждения, такие как MCVD, FCVD, PCVD, OVD, обеспечивают наиболее высокую гибкость производственного процесса. Среди проблем, связанных с производством волокон специального назначения, самой сложной задачей остается легирование сердцевины редкоземельными материалами, такими как Er, Yb и др. Для этого требуется высокая однородность легирующих материалов, высокая концентрация и возможность легировать сердцевины больших диаметров. Наиболее широко используется метод, называемый «жидким легированием», который состоит в том, что стержень для изготовления сердцевины после каждого осаждения пропускается через легирующий раствор, содержащий редкоземельные материалы. Это довольно обременительный метод, имеющий некоторые ограничения. Другой метод, применяемый компанией Liekki, основан на прямом осаждении наночастиц (DND).