Министерство науки и образования Республики Казахстан
Высшая техническая школа
Курсовая работа
По предмету: Цифровые устройства и микропроцессорные системы
На тему: «Цифровые счетчики импульсов»
Выполнил: студент гр. В-512
Кабекенов М.
Проверила: Отарбаева Ж. О.
2010г.
Содержание
Суммирующий последовательный счётчик. 6
Вычитающий последовательный счётчик. 7
Реверсивный последовательный счётчик. 8
Параллельный суммирующий счётчик. 12
Счетчики с параллельным переносом. 12
Разработка принципиальной схемы.. 14
Составление структурной схемы счётчика. 15
Составление функциональной схемы счётчика. 16
Простейшие одноразрядные счетчики импульсов. 16
Список используемой литературы: 23
С развитием электроники появился такой класс электронной техники, как цифровая. Эта техника предназначена для формирования, обработки и передачи электрических импульсных сигналов и перепадов напряжения и тока, а также для управления информацией и её хранения. Цифровые устройства занимают доминирующее место во многих областях науки и техники, что обусловлено существенно меньшим потреблением энергии от источника питания, более высокой точностью, меньшей критичностью к изменениям внешних условий, большей помехоустойчивостью. Цифровая техника включает в себя такие устройства как триггеры, регистры, счётчики, комбинационные устройства, программируемые логические интегральные схемы и др.
Цифровой счетчик импульсов - это цифровой узел, который осуществляет счет поступающих на его вход импульсов. Результат счета формируется счетчиком в заданном коде и может храниться требуемое время. Счетчики строятся на триггерах, при этом количество импульсов, которое может подсчитать счетчик определяется из выражения N = 2n - 1, где n - число триггеров, а минус один, потому что в цифровой технике за начало отсчета принимается 0. Счетчики бывают суммирующие, когда счет идет на увеличение, и вычитающие - счет на уменьшение. Если счетчик может переключаться в процессе работы с суммирования на вычитание и наоборот, то он называется реверсивным.
В качестве исходного состояния принят нулевой уровень на всех выходах триггеров (Q1 - Q3), т. е. цифровой код 000. При этом старшим разрядом является выход Q3. Для перевода всех триггеров в нулевое состояние входы R триггеров объединены и на них подается необходимый уровень напряжения (т. е. импульс, обнуляющий триггеры). По сути это сброс. На вход С поступают тактовые импульсы, которые увеличивают цифровой код на единицу, т. е. после прихода первого импульса первый триггер переключается в состояние 1 (код 001), после прихода второго импульса второй триггер переключается в состояние 1, а первый - в состояние 0 (код 010), потом третий и т. д. В результате подобное устройство может досчитать до 7 (код 111), поскольку 23 - 1 = 7. Когда на всех выходах триггеров установились единицы, говорят, что счетчик переполнен. После прихода следующего (девятого) импульса счетчик обнулится и начнется все с начала. На графиках изменение состояний триггеров происходит с некоторой задержкой tз. На третьем разряде задержка уже утроенная. Увеличивающаяся с увеличением числа разрядов задержка является недостатком счетчиков с последовательным переносом, что, несмотря на простоту, ограничивает их применение в устройствах с небольшим числом разрядов.
Счетчиками называют устройства для подсчёта числа поступивших на их вход импульсов (команд), запоминания и хранения результата счёта и выдачи этого результата. Основным параметром счётчика является модуль счёта(емкость) Kс. Эта величина равна числу устойчивых состояний счётчика. После поступления импульсов Kс счётчик возвращается в исходное состояние. Для двоичных счётчиков Kс = 2 m, где m – число разрядов счётчика.
Кроме Kс важными характеристиками счётчика являются максимальная частота счёта fmax и время установления tуст, которые характеризуют быстродействие счётчика.
Tуст – длительность переходного процесса переключения счётчика в новое состояние: tуст = mtтр, где m – число разрядов, а tтр – время переключения триггера.
Fmax – максимальная частота входных импульсов, при которой не происходит потери импульсов.
По типу функционирования:
- Суммирующие;
- Вычитающие;
- Реверсивные.
В суммирующем счётчике приход каждого входного импульса увеличивает результат счёта на единицу, в вычитающем – уменьшает на единицу; в реверсивных счётчиках может происходить как суммирование, так и вычитание.
По структурной организации:
- последовательными;
- параллельными;
- последовательно-параллельными.
В последовательном счётчике входной импульс подаётся только на вход первого разряда, на входы каждого последующего разряда подаётся выходной импульс предшествующего ему разряда.
В параллельном счётчике с приходом очередного счётного импульса переключение триггеров при переходе в новое состояние происходит одновременно.
Последовательно-параллельная схема включает в себя оба предыдущих варианта.
По порядку изменения состояний:
- с естественным порядком счёта;
- с произвольным порядком счёта.
По модулю счёта:
- двоичные;
- недвоичные.
Модуль счёта двоичного счётчика Kc=2, а модуль счёта недвоичного счётчика Kc= 2m, где m – число разрядов счётчика.
Рис.1. Суммирующий последовательный 3х разрядный счётчик.
Триггеры данного счетчика срабатывают по заднему фронту счетного импульса. Вход старшего разряда счетчика связан с прямым выходом (Q) младшего соседнего разряда. Временная диаграмма работы такого счетчика приведена на рис.2. В начальный момент времени состояния всех триггеров равны лог.0, соответственно на их прямых выходах лог.0. Это достигается посредством кратковременного лог.0, поданного на входы асинхронной установки триггеров в лог.0. Общее состояние счетчика можно охарактеризовать двоичным числом (000). Во время счёта на входах асинхронной установки триггеров в лог.1 поддерживается лог.1. После прихода заднего фронта первого импульса 0-разряд переключается в противоположное состояние – лог.1. На входе 1-разряда появляется передний фронт счетного импульса. Состояние счетчика (001). После прихода на вход счетчика заднего фронта второго импульса 0-разряд переключается в противоположное состояние – лог.0, на входе 1-разряда появляется задний фронт счетного импульса, который переключает 1-разряд в лог.1. Общее состояние счетчика – (010). Следующий задний фронт на входе 0-разряда установит его в лог.1 (011) и т.д. Таким образом, счетчик накапливает число входных импульсов, поступающих на его вход. При поступлении 8-ми импульсов на его вход счетчик возвращается в исходное состояние (000), значит коэффициент счета (КСЧ) данного счетчика равен 8.
Рис. 2. Временная диаграмма последовательного суммирующего счетчика.
Триггеры данного счетчика срабатывают по заднему фронту. Для реализации операции вычитания счетный вход старшего разряда подключается к инверсному выходу соседнего младшего разряда. Предварительно триггеры устанавливают в состояние лог.1 (111). Работу данного счетчика показывает временная диаграмма на рис. 4.
Рис. 1 Последовательный вычитающий счетчик
Рис. 2 Временная диаграмма последовательного вычитающего счетчика
Для реализации реверсивного счетчика необходимо объединить функции суммирующего счетчика и функции вычитающего счетчика. Схема данного счетчика приведена на рис. 5. Для управления режимом счета служат сигналы «сумма» и «разность». Для режима суммирования «сумма»=лог.1, «0»-кратковременный лог.0; «разность»=лог.0, «1»-кратковременный лог.0. При этом элементы DD4.1 и DD4.3 разрешают подачу на тактовые входы триггеров DD1.2, DD2.1 через элементы DD5.1 и DD5.2 сигналов с прямых выходов триггеров DD1.1, DD1.2 соответственно. При этом элементы DD4.2 и DD4.4 закрыты, на их выходах присутствует лог.0, поэтому действие инверсных выходов никак не отражается на счетных входах триггеров DD1.2, DD2.1. Таким образом, реализуется операция суммирования. Для реализации операции вычитания на вход «сумма» подается лог.0, на вход «разность» лог.1. При этом элементы DD4.2, DD4.4 разрешают подачу на входы элементов DD5.1, DD5.2, а соответственно и на счетные входы триггеров DD1.2, DD2.1 сигналов с инверсных выходов триггеров DD1.1, DD1.2. При этом элементы DD4.1, DD4.3 закрыты и сигналы с прямых выходов триггеров DD1.1, DD1.2 никак не воздействуют на счетные входы триггеров DD1.2, DD2.1. Таким образом, реализуется операция вычитания.
Рис. 3 Последовательный реверсивный 3-х разрядный счетчик
Для реализации данных счетчиков также можно использовать триггеры, срабатывающие по переднему фронту счетных импульсов. Тогда при суммировании на счетный вход старшего разряда надо подавать сигнал с инверсного выхода соседнего младшего разряда, а при вычитании наоборот – соединять счетный вход с прямым выходом.