Рис. 10
Графы сложных линейных систем могут быть также разбиты на подграфы. Критерии разбиения разнообразны - наличие симметрии, последовательно или параллельно соединенных четырехполюсников, изменение структуры и т.д.
Расчет линейных графов, т.е. определение передачи между выбранными входными м выходными узлами графа ( подграфа ), может быть проведена двумя способами: 1) непосредственным расчетом на основе правила не касающихся контуров и 2) последовательным упрощением графа на основе известных правил преобразования.
Правило не касающихся контуров, впервые предложенное Мэзоном / 1 /, удобно при расчете сравнительно не сложных цепей . в формулировке автора оно выражается следующим образом:
, (7)где
- величина k-го пути между узлами ;D - определитель графа;
D k - определитель части графа, не касающегося k-го пути, т.е. не имеющего с k-ым путем общих узлов.
Уравнение (7) может быть представлено в удобном для практического использования виде:
(8)где
- все контуры графа ( m = 1, 2, ..... n ),причем
если путь
и контур имеет хотя бы один общий узел. Практика показывает, что произведение контуров второго и более высоких порядков мало влияют на величину передачи и в большинстве случаев могут не учитываться.
При этом правило Мэзона имеет простую форму и легко применимо для нахождения зависимости между двумя любыми переменными в графе.
Рассмотрим пример - направленный ответвитель, к плечам которого подключены генератор, нагрузка и индикатор ( рис.11, а ). Передача между узлами
в соответствии с уравнением (8) равна
(9) Как видно из уравнения (9), даже простая система приводит к сравнительно сложному выражению для передачи, требующему каких-то упрощений для практического использования. Для упрощения подобных графов удобно воспользоваться условием зависимости и устранить ветви, не имеющие ни какой информации ( например,
). Эта операция может быть проведена понижением порядка графа - устранением вершины . Для этого выделяем связи, имеющие непосредственный интерес и не проходящие через вершину ( рис.11, б ).
(10) Связи
для наглядности структуры графа удобно сохранить в отдельности, несмотря на их равенство. Теперь для преобразованного графа сигнал равен:
(11)Наложим условие, необходимое для направленного ответвления отраженного от нагрузки сигнала
(12 ) Тогда в режиме выделения отраженного сигнала имеем
Рис. 11
(14) Рассмотренный пример показывает удобство преобразования исходной структуры графа к более простому виду, сохраняя при этом общность с физической структурой системы и используя обобщенные параметры
, доступные экспериментальному определению. Критериями упрощения являются выделение основных связей и устранение второстепенных, являющихся в процессе эксперимента постоянными. Узлы, которые при измерительных манипуляциях получают связи с другими узлами, исключать при преобразовании нельзя. Практически наиболее часто упрощаются части графа, имеющие непосредственные связи с индикаторным каналом, как и в рассмотренном выше случае. На рис. 12, а представлен граф восьмиполюсника, к плечам 1 и 2 которого подключены генератор и нагрузка соответственно, а к плечам 3 и 4 - индикаторы. Пользуясь описанным выше примером, приведем этот граф к виду, показанному на рис. 12, б. Передачи ветвей преобразованного графа есть следующие функции передач ветвей основного графа:
(15)где
- передачи контуров индикаторных плеч
(16) Преобразованный граф ( рис. 12, б ) - это граф с односторонними связями с индикаторными плечами, что является удобным для практического анализа. Реакции индикаторных плеч на остальную схему учитывается в передачах преобразованного графа.
|
Для общего случая 2n - полюсника, в котором (n - k) индикаторных плеч упрощаются к рассмотренным выше односторонним связям, могут быть получены следующие рекуррентные формулы. Для связей в не индикаторных плечах: