Классификация радиационных МНК представлена на рис1.
  Электронная микроскопия основывается на взаимодействии электронов с энергиями 0,5 - 50 кэВ с веществом, при этом они претерпевают упругие и неупругие столкновения.
  Рассмотрим основные способы использования электронов при контроле тонкопленочных структур (см. рис.2)
 Схемы расположения антенн преобразователей по отношению к объекту контроля.
   Обозначения: - антенна преобразователя;
  - нагрузка.
  
1 – СВЧ-генератор; 2 – объект контроля; 3 – СВЧ-приемник; 4 – линза для создания (квази) плоского фронта волны; 5 – линза для формирования радио-изображения; 6 – опорное (эталонное) плечо мостовых схем.
  Примечание: допускается применение комбинаций схем расположения антенн преобразователя по отношению к объекту контроля.
  Растровая электронная микроскопия (РЭМ). Сфокусированный пучок электронов 1 (рис. 2) диаметром 2-10 нм с помощью отклоняющей системы 2 перемещается по поверхности образца, (либо диэлектрической пленки З1, либо полупроводника З-11.) Синхронно с этим пучком электронный пучок перемещается по экрану электронно-лучевой трубки. Интенсивность электронного луча моделируется сигналом, поступающим с образца. Строчная и кадровая развертка пучка электронов позволяют наблюдать на экране ЭЛТ определенную площадь исследуемого образца. В качестве модулирующего сигнала можно использовать вторичные и отражательные электроны.
   
Рисунок 1 – Классификация радиационных методов
   
Рисунок 2 – Режимы работы растровой электронной микроскопии
 а) контраст в прошедших электронах; б) контраст во вторичных и отраженных электронах; в) контраст в наведенном токе (З11 - условно вынесен за пределы прибора). 1 – сфокусированный луч; 2 – отклоняющая система; 3 – объект исследования - диэлектрическая пленка; 4 - детектор вторичных и отраженных электронов; 5 -усилитель; 6 - генератор развертки; 7 - ЭЛТ; 8 - сетка детектора; 9 -отраженные электроны; 10 - вторичные электроны.
 Просвечивающая электронная микроскопия (ПЭМ) основана на поглощении, дифракции электронов взаимодействия с атомами вещества. При этом прошедший через пленку сигнал снимается с сопротивления, включаемого последовательно с образцом З1. Для получения изображения на экране используются мощные линзы, располагаемые за образцом. Стороны образца должны быть плоскопараллельными, чистыми. Толщина образца должна быть много меньше длины свободного пробега электронов и должна составлять 10.. 100 нм.
  ПЭМ позволяет определить: формы и размеры дислокаций, толщину образцов и профиль пленок. В настоящее время существуют ПЭ микроскопы до 3 МэВ.
 Сканирующая электронная микроскопия (СЭМ).
  Изображение формируется как за счет вторичных электронов, так и за счет отраженных электронов (рис. 2). Вторичные электроны позволяют определить химический состав образца, а отраженные – морфологию его поверхности. При подаче отрицательного потенциала - 50 В происходит запирание малоэнергетичных вторичных электронов и изображение на экране становится контрастным, поскольку грани, расположенные под отрицательным углом к детектору, не просматриваются вообще. Если на сетку детектора подать положительный потенциал (+250 В), то вторичные электроны собираются с поверхности всего образца, что смягчает контрастность изображения. Метод позволяет получить информацию о:
 - топологии исследуемой поверхности;
 - геометрическом рельефе;
 - структуре исследуемой поверхности;
 - коэффициенте вторичной эмиссии;
 - об изменении проводимости;
 - о местоположении и высоте потенциальных барьеров;
 - о распределении потенциала по поверхности и в поверхности (за счет заряда по поверхности при облучении электронами) при попадании сканирующего луча на поверхность полупроводниковых приборов в ней наводятся токи и напряжения, которые изменяют траектории вторичных электронов. Элементы ИМС с положительным потенциалом по сравнению с участками, имеющими более низкий потенциал, выглядят темными. Это обуславливается наличием замедляющих по лей над участками образца с положительным потенциалом, которые приводят к уменьшению сигнала вторичных электронов. Потенциально-контрастные измерения дают только качественные результаты из-за того, что замедляющие поля зависят не только от геометрии и напряжения пятна, но и от распределения напряжения по всей поверхности образца;
 - большого разброса скоростей вторичных электронов;
 - потенциальный контраст накладывается на топографический и на кон траст, связанный с неоднородностью состава материала образца.
 Режим наведенного (индуцированного электронно-лучевого тока).
  Электронный луч с большой энергией фокусируется на маленькой площади микросхемы и проникает через несколько слоев ее структуры, в результате в полупроводнике генерируются электронно-дырочные пары. Схема включения образца представлена на (рис.2, в). При соответствующих внешних напряжениях, приложенных к ИМС, измеряются токи обусловленные вновь рожденными носителями заряда. Этот метод позволяет:
 - определить периметр р-n перехода. Форма периметра оказывает влияние на пробивные напряжения и токи утечки. Первичный электронный луч (2) (рис. 3 и 4) движется по поверхности образца (1) в направлениях х, и в зависимости от направления перемещения меняется значение индуцированного тока в р-n переходе. По фотографиям р-n перехода можно определить искажения периметра р-n перехода (рис.5).
 - определить места локального пробоя р-n перехода. При образовании локального пробоя р-n перехода в месте пробоя образуется лавинное умножение носителей тока (рис.6) Если первичный пучок электронов (1) попадает в эту область (3), то генерированные первичными электронами электронно-дырочные пары также умножаются в р-n переходе, в результате чего в данной точке будет зафиксировано увеличение сигнала и соответственно появление светлого пятна на изображении. Изменяя обратное смещение на р-n переходе, можно выявить момент образования пробоя, а проведя выявление структурных дефектов например с помощью селективного травления или с ПЭМ, можно сопоставить область пробоя с тем или иным дефектом.
   
Рисунок 3 – Схема прохождения электронного луча
   
Рисунок 4 – Изображение торцевого р-п-перехода с целью
 определения его периметра
 1 – торцевой р-n переход; 2 – электронный луч;
  3 – область генерации электронно-дырочных пар.
   
 
Рисунок 4 – Изображение планарного р-п-перехода с целью
 определения его периметра
 1 - планарный р-n переход; 2 - электронный луч;
 3 - область генерации электронно-дырочных пар.
   
Рисунок 5 – Искажения периметра планарного p-n-перехода сверху
 - наблюдать дефекты. Если в области р-n перехода находится дефект (4) (рис. 6), то при попадании первичного пучка электронов в область дефекта некоторая часть генерированных пар рекомбинирует на дефекте, и соответственно до границы р-n перехода дойдет меньшее число носителей, что уменьшит ток во внешней цепи. На фотографии р-n перехода эта область будет выглядеть более темной, чем остальной фон. Изменяя соотношение между глубиной залегания р-n перехода и проникновением первичных электронов можно зондировать электрическую активность дефектов, располагающихся на разной глубине. Наблюдение дефектов можно проводить при обратных и прямых смещениях р-n перехода.