Смекни!
smekni.com

Структура и качество оптического изображения (стр. 3 из 3)

Рисунок 10 - Связь

с радиусом выходной сферы
и расстоянием

от выходной сферы до точки

Отрезок

, причем
– для крайнего луча, а для остальных лучей:
,
. Теперь интеграл (25) можно записать так:

. (26)

Введем канонические (приведенные) координаты на предмете и изображении:


. (27)

Тогда в канонических координатах получим:

. (28)

Так как зрачковая функция вне зрачка равна нулю, интегрирование происходит внутри зрачка. Комплексная амплитуда в изображении точки в канонических координатах, как следует из выражения (28), связана со зрачковой функцией через обратное преобразование Фурье:

. (29)

Комплексная амплитуда поля в изображении точки есть обратное Фурье-преобразование от зрачковой функции в канонических координатах.

Функция рассеяния точки – это распределение не амплитуды поля, а интенсивности, то есть квадрата модуля комплексной амплитуды

. Тогда для ФРТ можно получить следующее выражение:

. (30)

Оптическую передаточную функцию также можно выразить в канонических координатах:

, (31)

где

канонические пространственные частоты:

(32)

Канонические частоты безразмерные:

. В этих координатах получаем простую связь зрачковой функции с оптической передаточной функцией:

. (33)

Это выражение в соответствии со свойством преобразования Фурье можно представить через автокорреляцию зрачковой функции:

, (34)

где

– площадь зрачка в канонических координатах.

ЛИТЕРАТУРА

1. Бегунов Б.Н., Заказнов Н.П. и др. Теория оптических систем. – М.: Машиностроение, 2004

2. Дубовик А.С. Прикладная оптика. – М.: Недра, 2002

3. Нагибина И.М. и др. Прикладная физическая оптика. Учебное пособие.- М.: Высшая школа, 2002