БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра ЭТТ
РЕФЕРАТ
На тему:
«Структура и качество оптического изображения»
МИНСК, 2008
Основные характеристики структуры изображения
Изображающие приборы могут давать изображение различного качества с точки зрения передачи структуры предмета. Структура и форма светового поля в пространстве изображений подобна структуре и форме предмета, однако оптическая система вносит в эту структуру свои изменения, оценка которых есть оценка качества изображения.
Передача структуры предмета или изображения – это отображение оптической системой мелких деталей объекта. Для описания такого отображения необходимо математическое описание предмета и изображения в виде функций
и . Эти функции описывают зависимость распределения интенсивности от пространственных координат.Представим предмет в виде совокупности бесконечного количества светящихся точек. Для того, чтобы считать, что изображение предмета – это совокупность изображений соответствующих точек предмета, оптическая система должна удовлетворять свойствам линейности и инвариантности к сдвигу.
Свойство линейности
Изображение суммы объектов равно сумме изображений каждого объекта:
. (1)То есть, если предмет – это сумма точек
, то изображение – сумма изображений этих точек . Изображающие оптические системы полностью линейны.При смещении точки ее изображение только смещается на пропорциональную величину (рис.1):
, (2)где V – обобщенное увеличение.
Рисунок.1 - Условие изопланатизма.
В отличие от условия линейности, условие изопланатизма в оптических системах соблюдается приблизительно, поскольку характер изображения при смещении изменяется. Изопланатизм, как правило, не соблюдается в пределах всего поля, обычно он соблюдается только при небольших смещениях.
Изопланатическая зона – это зона, в пределах которой соблюдается условие изопланатизма. Чем больше размер изопланатической зоны, тем лучше изопланатизм. Если зона полностью перекрывает предмет, то система полностью изопланатична. Мы будем рассматривать структуру изображения в пределах одной изопланатической зоны.
В идеальной оптической системе точка изображается в виде точки, а в реальной оптической системе точка изображается в виде пятна рассеяния (рис.2).
Рисунок 2 - Изображение точки в пределах изопланатической зоны.
Основной характеристикой, описывающей передачу структуры предмета оптической системой является функция рассеяния точки.
Функция рассеяния точки(ФРТ, point spread function, PSF)
– это функция, описывающая зависимость распределения освещенности от координат в плоскости изображения, если предмет – это светящаяся точка в центре изопланатической зоны.Зная функцию рассеяния точки, можно найти изображение любого предмета, если разложить его на точки и найти ФРТ от каждой точки. Если есть предмет
, то каждая его точка изображается в виде функции , то есть ФРТ смещается в точку с координатами (рис.2), а изображение всего предмета будет представлять собой сумму этих изображений: . (3)Если увеличение V принять за единицу, то выражение (3) становится сверткой (конволюцией).
Функция изображения есть свертка функции предмета с функцией рассеяния точки:
(4)Гармонический периодический объект
Предмет кроме разложения на отдельные точки можно разложить на другие элементарные части – периодические решетки.
Периодическая решетка – это структура с белыми и черными полосами.
Гармоническая периодическая решетка – это структура, интенсивность которой описывается гармонической функцией (рис.3).
В электронике существует аналог гармонической решетки – периодический во времени сигнал на входе прибора.
Рисунок 3 - Гармоническая периодическая решетка
Гармоническая периодическая решетка описывается выражением:
, (5)где a – вещественная амплитуда, b – сдвиг, T – период, q – угол ориентации.
Вместо периода можно использовать пространственную частоту
, а вместо вещественной амплитуды и сдвига – комплексную амплитуду: , (6)Тогда интенсивность гармонической решетки в комплексной форме:
, (7)Величину
можно выразить как , тогда интенсивность гармонической решетки будет зависеть от двух координат (x, y): (8)где
– частота в направлении x, – частота в направлении y.Любой объект, как было сказано выше, можно разложить на элементарные гармонические объекты, тогда изображение – это совокупность изображений элементарных объектов. Эти изображения для реальных оптических систем всегда имеют искажения, что связано с законом сохранения энергии. Идеальные оптические системы нарушают закон сохранения энергии, так как они для сохранения неизменной структуры предмета должны передавать бесконечно большую энергию.
Изображение гармонического объекта можно описать, если в выражение (9.3) подставить в качестве распределения интенсивности на предмете функцию
(8): . (9)Если выразить координаты предмета и изображения в едином масштабе, то V=1, следовательно:
.После замены переменных
получим:или, после переобозначения
: . (10)Двойной интеграл в выражении (9.10) – это некоторая функция
, зависящая от пространственных частот.Обозначим
, и запишем распределение интенсивности на изображении гармонического объекта в следующем виде: . (11)Как показывают соотношения (8) и (11), изображение от предмета отличается только комплексной амплитудой, то есть изображение гармонической решетки любой оптической системы есть гармоническая решетка с той же частотой. Поэтому гармоническую решетку удобно использовать для исследования и оценки передачи структуры изображения. Изменение комплексной амплитуды гармонической решетки – это и есть действие оптической системы.
Оптическая передаточная функция (ОПФ)
Оптическая передаточная функция(optical transfer function, OTF)
характеризует передачу структуры предмета оптической системой как функция пространственных частот: . (12)ОПФ связана с ФРТ интегральным преобразованием – преобразованием Фурье:
(13)или
или
,где F – обозначение Фурье преобразования:
. (14)ФРТ показывает, как оптическая система изображает точку, а ОПФ показывает, как оптическая система изображает гармоническую решетку, то есть как меняется комплексная амплитуда решетки в зависимости от частоты.