Міністерство освіти і науки України
Вінницький національний технічний університет
Інститут автоматики, електроніки та комп’ютерних систем управління
Курсова робота з дисципліни
”Елементи та пристрої систем управління та автоматики”
ТЕМА:Розробка методики розрахунку осердя з прямокутною петлею гістерезису при імпульсному діянні
Вінниця ВНТУ 2009
АНОТАЦІЯ
В даній курсовій роботі розглянуто методика розрахунку кільцевої форми осердя з прямокутною петлею гістерезису при імпульсному діянні. На основі математичної моделі розрахунку проведено виконання програми, що дає змогу отримати геометричні параметри осердя та здійснити побудову графічної моделі петлі гістерезису. Умова співвідношень геометричних параметрів та напруженостей графічної моделі петлі гістерезису задовольняють вимогам поставленого завдання.
АННОТАЦИЯ
В данной курсовой работе рассмотрена методика расчета кольцевой формы осердя с прямоугольной петлей гистерезис при импульсной деянии. На основе математической модели расчета проведена выполнения программы, что позволяет получить геометрические параметры осердя и осуществить построение графической модели петли гистерезис. Условие соотношений геометрических параметров и напряженности графической модели петли гистерезис удовлетворяют требованиям поставленной задачи.
ABSTRACT
This course work considered the method of calculating the ring shape core with rectangular hysteresis loop with pulse acts. Based on a mathematical model for calculating the program, which lets you get the core geometric parameters and to build graphical models of hysteresis loop. Condition relations of geometrical parameters and tension graphical model hysteresis loop requirements of the task.
ВСТУП
Характерною особливістю магнітоупорядкованих речовин, що володіють спонтанною намагніченістю, до яких у першу чергу віднесемо феромагнетиків, є наявність у них кривої намагнічування і петлі гістерезису.
Значення гістерезисних параметрів фактично визначають область техніки, де використовується той чи інший магнітний матеріал. Так, для магнітом’яких матеріалів (магнітопроводи генераторів, сердечники трансформаторів і т.д.), потрібно як можна менше значення намагніченості, а для магнітотвердих матеріалів (постійні магніти) необхідна якомога більша величина намагніченості. У підсумку в сучасних магнітних матеріалах значення коерцитивної сили намагніченості можуть відрізнятися на 5-6 порядків[1].
Для концентрації магнітного поля і надання йому бажаної конфігурації окремі частини електротехнічних пристроїв виконуються з феромагнітних матеріалів. Ці частини називають магнітопроводами або сердечниками. Магнітний потік створюється струмами, протікають по обмотка електротехнічних пристроїв, рідше - постійними магнітами. Сукупність пристроїв, що містять феромагнітних тіла і утворюють замкнуте коло, уздовж якої замикаються лінії магнітної індукції, називають магнітним колом[2].
Гістерезис (від грец. Hysteresis - відставання, запізнювання), явище, яке полягає в тому, що фізична величина, що характеризує стан тіла (наприклад, намагніченість), неоднозначно залежить від фізичних величини, що характеризує зовнішні умови (наприклад, магнітного поля). Гістерезис спостерігається в тих випадках, коли стан тіла в даний момент часу визначається зовнішніми умовами не тільки в той же, але і в попередні моменти часу. Неоднозначна залежність величин спостерігається в будь-яких процесах, тому що для зміни стану тіла завжди потрібен певний час (час релаксації). Таке відставання тим менше, чим повільніше змінюються зовнішні умови Однак для деяких процесів відставання при уповільненні зміни зовнішніх умов не зменшується. У цих випадках неоднозначну залежність величин називається гістерезисною, а саме явище – гістерезисом [1].
Гістерезис – це властивість систем (зазвичай фізичних), які не відразу підлягають прикладеним силам. Реакція цих систем залежить від сил, що діяли раніше, тобто системи залежать від власної історії [2].
Гістерезис спостерігається в різних речовинах і при різних фізичних процесах. Найбільший інтерес представляють: магнітний гістерезис, діелектричний гістерезис та пружний гістерезис.
Магнітний гістерезис – явище залежності вектора намагнічування і вектора напруженості магнітного поля в речовині не тільки від доданої зовнішнього поля, але й від передісторії даного зразка. Магнітний гістерезис зазвичай проявляється в феромагнетиків - Fe, Co, Ni і сплавах на їх основі. Саме магнітним гістерезис пояснюється існування постійних магнітів [3].
Явище магнітного гістерезису спостерігається не тільки при зміні поля H за величиною і знаком, але також і при його обертанні, що відповідає відставанню у зміні напрямку M з зміною напрямку H. Гістерезис магнітного обертання виникає також при обертанні зразка щодо фіксованого напрямку H.
Теорія явища гістерезису враховує конкретну магнітну доменну структуру зразка та її зміни в ході намагнічування і перемагнічування. Ці зміни зумовлені зміщенням доменних меж і зростанням одних доменів за рахунок інших, а також обертанням вектора намагніченості в доменах під дією зовнішнього магнітного поля. Все, що затримує ці процеси і сприяє влученню магнетика в метастабільний стан що, може стати причиною магнітного гістерезису.
У однодоменних феромагнітних частинок можуть йти тільки процеси обертання M. Цим процесам перешкоджає магнітна анізотропія різного походження (анізотропія самого кристалу, анізотропія форми частинок і анізотропія пружних напружень). Завдяки анізотропії, M як би утримується деяким внутрішнім полем HA показаний на (рисунку 1.1) (ефективним полем магнітної анізотропії) вздовж однієї з осей легкого намагнічування, що відповідає мінімуму енергії. Магнітний гістерезис виникає з-за того, що два напрямки M (за і проти) цієї осі в магнітобагатому зразку або кілька еквівалентних (по енергії) направлених М в магнітобагатому зразку відповідають станам, відокремленим одне від одного потенційним бар'єром (пропорційним HA). При перемагнічуванні одно доменних частинок вектор M поруч послідовних незворотних стрибків повертається в напрямку H. Більш універсальним є механізм неоднорідного обертання M. Однак найбільший вплив на Hc він надає у випадку, коли основну роль відіграє анізотропія форми частинок. При цьому Hc може бути істотно менше ефективного поля анізотропії форми.
При магнітному гістерезису одному і тому ж значенню напруженості зовнішнього магнітного поля Н відповідають різні значення магнітного моменту М, показані на рисунку (1.1). Ця неоднозначність обумовлена впливом станів зразка, що передують даному (тобто магнітної передісторією зразка). Діелектричний гістерезис спостерігається зазвичай у сегнетоелектрика, наприклад титану барію. Залежність поляризації Р від напруженості електричного поля Е в сегнетоелектрика (рис. 1.2) подібна до залежності від М Н в феромагнетиків і пояснюється наявністю спонтанної електричної поляризації, електричних доменів та труднощами перебудови доменної структури. Втрати гістерезису складають більшу частину діелектричних втрат у сегнетоелектрика.
Малюнок 0.1 - Петля магнітного гістерезису для феромагнетику
Оскільки з поляризацією пов'язані інші характеристики сегнетоелектриків, наприклад деформація, то з діелектричним гістерезисом пов'язані інші види гістерезису, наприклад п'єзоелектричний гістерезис. У деяких випадках спостерігаються подвійні петлі діелектричного гістерезису (рис. 1.3). Це пояснюється тим, що під впливом електричного поля в зразку відбувається фазовий перехід з перебудовою кристалічної структури. Такого роду діелектричний гістерезис тісно пов'язаний з гістерезисом при фазових переходах[6].
Малюнок 1.2 Вплив механічної і термічної обробки на форму петлі магнітного гістерезису пермалоя
Вид і розміри петлі магнітного гістерезису, величина Нс в різних феромагнетиків можуть змінюватися в широких межах. На петлю магнітного гістерезису сильно впливає обробка матеріалу, при якій змінюється число дефектів.
Малюнок 1.3 Подвійна петля діелектричного гістерезису
Пружний гістерезис, тобто гістерезисна залежність деформації і від механічного напруги s, спостерігається в будь-яких реальних матеріалах при досить великих напругах (рис. 1.5) [6].
Малюнок 1.4 Петля пружного гістерезису
Пружний гістерезис виникає кожного разу, коли має місце пластична (не пружна) деформація. Пластична деформація обумовлена переміщенням дефектів, наприклад дислокацій, завжди присутніх в реальних матеріалах. Домішки, включення та інші дефекти, а також сама кристалічна решітка прагнуть утримати дислокацію в певних положеннях в кристалі. Тому потрібні напруги остатньої величини, щоб зрушити дислокацію. Механічна обробка і введення домішок призводять до закріплення дислокацій, в результаті чого відбувається зміцнення матеріалу, пластична деформація і пружний гістерезис спостерігаються при великих напругах. Енергія, втрачається в зразку за один цикл, йде у кінцевому рахунку на нагрівання зразка. Втрати на пружний гістерезис дають внесок у внутрішнє тертя. У випадку пружних деформацій, крім гістерезисних, є і ін втрати, наприклад зумовлені в'язкістю. Величина цих втрат, на відміну від гістерезисних, залежить від частоти зміни s (або і). Іноді поняття "пружний гістерезис " вживається ширше - говорять про динамічної петлі пружного гістерезису, що включає всі втрати на даній частоті.