Рис. 2.7. Типовая характеристика импульсной
помехоустойчивости ЛЭ
Основные параметры логических элементов
Динамические параметры. Быстродействие ЛЭ при переключении определяется электрической схемой, технологией изготовления и характером нагрузки. Для идентификации измерений динамических параметров в технической документации на ИС приводятся параметры эквивалентной нагрузки, устанавливаются требования к амплитуде и длительности фронта входного сигнала. Уровни отсчета напряжений для определения динамических параметров устанавливаются относительно выходных пороговых напряжений «1» и «0» (рис. 2.8). Временные зависимости напряжений в зонах выше или ниже указанных на рисунке пороговых уровней не влияют на работу ЛЭ и поэтому не представляют интереса.
Рис. 2.8. Входной (а) и выходной (б) сигналы
инвертирующего ЛЭ
Основными динамическими параметрами ЛЭ являются задержка распространения сигнала tЗД Р при переключении и длительность положительного (нарастающего) и отрицательного (спадающего) фронтов tФ выходных сигналов.
Задержка распространения сигнала при переходе выходного напряжения от «1» к «0»
(при положительной логике* это соответствует отрицательному фронту, при отрицательной — положительному фронту выходного сигнала) определяется как интервал времени между фронтами входного и выходного сигналов ЛЭ, измеренного по заданному уровню.(*Для положительной логики более положительное значение напряжения (высокий уровень) соответствует лог. 1, а менее положительное значение напряжения (низкий уровень) — лог. 0.
Для отрицательной логики менее положительное значение напряжения (низкий уровень) соответствует лог. 1. а более положительное значение напряжения (высокий уровень) — лог. 0.)
Задержка распространения сигнала при переходе выходного напряжения от «0» к «1»
(при положительной логике это соответствует положительному фронту, при отрицательной логике — отрицательному фронту выходного сигнала) определяется как интервал времени между фронтами входного и выходного сигнала ЛЭ, измеренного по заданному уровню. Задержки распространения ( , ) измеряются, как правило, по уровню 0,5 ( + ).При расчете временной задержки сигнала последовательно включенных ЛЭ используется средняя задержка распространения сигнала ЛЭ:
Длительность фронта выходного сигнала при переходе напряжения из «1» в «0» (
) для положительной логики соответствует отрицательному фронту, для отрицательной логики — положительному фронту.Длительность фронта выходного сигнала при переходе напряжения из 0 в 1 (
) для положительной логики соответствует положительному фронту, для отрицательной логики — отрицательному фронту. Иногда в технической документации на ИС , — обозначаются соответственно , . Длительности положительных и отрицательных фронтов измеряют по уровням 0,1 и 0,9 (см. рис. 2.8).Статические параметры определяют условия формирования и значения напряжений высокого и низкого уровней на выходе ЛЭ, его нагрузочную способность, потребляемую мощность при заданных напряжении питания, нагрузке и температуре окружающей среды.
К статическим параметрам ЛЭ относятся:
выходные и входные напряжения лог.0 и 1 (
, , , );входные и выходные пороговые напряжения лог. 0 и 1 (
, , , );входные и выходные токи лог. 0 и 1(
, , , );токи потребления в состоянии лог. 0 и 1 (
, );потребляемая мощность (Pпот).
Выходное пороговое напряжение лог. 0
есть максимальное или минимальное (в зависимости от типа логики) выходное напряжение лог. 0, определяемое пороговой точкой амплитудной передаточной характеристики в области лог. 0, в которой дифференциальный коэффициент усиления по напряжению КU = 1 для неинвертирующего ЛЭ и КU = -1 для инвертирующего ЛЭ (см. рис. 2.1).Выходное пороговое напряжение лог. 1
есть минимальное или максимальное (в зависимости от типа логики) выходное напряжение лог. 1, определяемое пороговой точкой амплитудной передаточной характеристики в области лог. 1, в которой КU = 1 для неинвертирующего ЛЭ, КU = -1 для инвертирующего ЛЭ.Порог зоны переключения лог. 0
есть пороговое напряжение лог. 0, определяемое пороговой точкой амплитудной передаточной характеристики в области лог. 0, в которой КU = 1 для неинвертирующего ЛЭ и КU = -1 для инвертирующего ЛЭ (см. рис. 2.1).Порог зоны переключения лог. 1
есть пороговое напряжение лог. 1, определяемое пороговой точкой амплитудной передаточной характеристики в области лог. 1, в которой КU = 1 для неинвертирующего ЛЭ и КU = -1 для инвертирующего ЛЭ.Входной ток ЛЭ задается для неблагоприятного режима работы в пределах допустимых температур окружающей среды и напряжения питания как для уровня лог. 0 (
), так и для уровня лог. 1 ( ). Выходные токи , характеризуют нагрузочную способность ЛЭ. (Втекающие токи имеют положительный знак, вытекающие токи — отрицательный знак.) Помехоустойчивость определяется относительно этих токов. Поэтому увеличение коэффициента разветвления приводит к снижению помехоустойчивости.Входной ток лог.1
определяется как входной ток при напряжении лог. 1 на входе ЛЭ. — входной ток лог. 0 определяется как входной ток при напряжении лог. 0 на входе ЛЭ. — выходной ток лог. 1 определяется как выходной ток при напряжении лог. 1 на выходе ЛЭ. — выходной ток лог. 0 определяется как выходной ток при напряжении лог. 0 на выходе ЛЭ.Ток, потребляемый от источника (источников) питания ЛЭ (Iпот), зависит от типа ЛЭ. Для ЛЭ ЭСЛ он почти постоянен (если не принимать во внимание нагрузку) и не зависит от его логического состояния, для ЛЭ ТТЛ ток имеет разные значения для состояния «0» (
) и «1» ( ). Кроме того, ЛЭ ТТЛ имеют выбросы тока во время переходных процессов при переключении ЛЭ, что приводит к существенному увеличению тока потребления на высоких частотах. Амплитуда и длительность выброса зависят от характера и величины нагрузки, схемотехники выходного каскада ЛЭ ТТЛ, длины линии связи и пр.