Jngup0+jngp0=0
Аналогичным образом компенсируются диффузная и дрейфовая составляющая дырочного тока (процесс 1-4).
Кроме рассмотренных механизмов протекания тока, существуют токи, связанные с процессами термогенерации и рекомбинации электронно-дырочных пар в области перехода. Дырки и электроны, проникающие в переход со стороны p- и n-областей соответственно, имеют конечную вероятность рекомбинировать в переходе (процесс 5-5’); с этим процессом связан ток, протекающий в направлении оси Х. С другой стороны, при термогенерации электронно-дырочных пар в переходе, образовавшиеся носители заряда подхватываются электрическим полем, причем электроны переносятся в n-область, а дырки в p-область (процесс 6-6’). Возникающий при этом ток термогенерации направлен против оси X (вдоль поля) и в точности компенсирует ток рекомбинации:
jz0+jg0 = 0
Суммарная плотность тока через переход в состоянии равновесия равна нулю:
j0 = jpgup0 + jpgp0 + jngup0 + jngp0 + jz0 + jg0 = 0
Следует отметить, что каждый из рассмотренных токов имеет малую величину. Дрейфовые токи малы ввиду того, что переносятся неосновными носителями в p- и n-областях, концентрация которых очень низка.
Диффузионные токи также малы ввиду того, что переносятся только наиболее энергичными носителями с кинетической энергией, большей высоты Ек, число которых также невелико. Токи рекомбинации малы ввиду малых размеров p-n-перехода (число генерированных пар мало) и мало временя пребывания носителей в переходе.
Основными параметрами p-n-перехода являются контактная разность потенциалов - jк, ширина перехода l0 = ln0 + lp0 и максимальная напряженность электрического поля Еmax. Необходимо также знать протяженность перехода n- и p-области по отдельности (ln0, lp0) и распределение напряженности электрического поля в переходе Е(x).
Контактная разность потенциалов может быть определена с помощью соотношений (1.4.1), (1.4.2), (1.4.3). Учитывая, что концентрация носителей заряда на грани перехода (в плоскостях X = - lp0, X = ln0) соответствует равновесным значениям (рис. 1.2.) получим:
(1.6.1.а) (1.6.1.б)перемножая равенства (1.6.1), с учетом (1.4.3), (1.2.1), (1.2.2), получим:
(1.6.2.а) (1.6.2.б)Равенство (1.6.2.а) свидетельствует о том, что контактная разность потенциалов определяется отношением концентраций однотипных носителей по разные стороны перехода, что является прямым следствием статистики Максвела-Больцмана в невырожденном полупроводнике.
Для практических целей удобно пользоваться соотношением (1.6.2.б), позволяющим вычислить контактную разность потенциалов непосредственно через концентрации легирующих примесей.
Из рис. 1.9. видно, что при отсутствии вырождения (когда уровень Ферми лежит в запрещённой зоне) высота потенциального барьера не может превышать ширины запрещенной зоны Е.
При этом
Из рис. 1.9. видно, что контактная разность потенциалов увеличивается с увеличением легирования эмиттера и базы. Переходы, изготовленные на основе полупроводника с большой шириной запрещенной зоны (и, следовательно, меньшей собственной концентрации носителей заряда ni), имеют большую контактную разность потенциалов.
Основным допущением при анализе перехода является пренебрежение концентрациями подвижных носителей заряда по сравнению с концентрациями примесей (1.2.3). При этом распределение плотности объемного заряда описывается соотношениями:
Электрическое поле может быть найдено из уравнения Пуассона:
(1.6.3)При этом контактная разность потенциалов равна:
Поскольку функция P(x) меняет знак в точке X=0, а на границах перехода в поле равно нулю – напряженность электрического поля составляет:
(1.6.4)Условие (1.6.4) соответствует электрической нейтральности p-n-перехода в целом:
(1.6.5)Уравнения (1.6.2.б), (1.6.3), (1.6.5) могут быть решены относительно неизвестных lp0, и ln0, после чего из (1.6.4) определяется максимальное поле p-n-перехода.
Наиболее просто определяется параметры ступенчатого p-n-перехода, так как в этом случае функция N(x) имеет вид:
(1.7.1)а значение граничных условий концентрации примеси
и известны:Контактная разность потенциалов определяется из уравнений (1.6.2.б)
; ; ;Подставляя (1.7.1), (1.6.3), (1.6.5), с учетом очевидного соотношения
, получим: (1.7.2)Максимальная напряженность электрического поля определяется из (1.6.4).
Из (1.7.2) следует, что при условии Nэ>>NБ практически весь переход сосредоточен в области базы (1р0<<1n0 = 10).
Поскольку величина jк слабо логарифмически зависит от концентрации примеси в эмиттере, при Nэ>>NБ параметры перехода определяются практически только свойством базы:
(1.7.3)ЧАСТЬ II. Расчет контактной разности потенциалов jk в p-n-переходе.
– контактная разность потенциалов, где: – температурный потенциал, – потенциал эмиттерной области, – потенциал области базы, таким образом:ЗАКЛЮЧЕНИЕ
Таким образом, в ходе проведения курсового исследования было установлено, что наиболее широко распространены следующие типы p-n-переходов: точечные, сплавные, диффузионные и эпитаксиальные, рассмотрены особенности технологических процессов изготовления этих переходов. Опираясь на исходные данные, была рассчитана контактная разница потенциалов, которая составила 0,113 (В). В третьей главе курсового проекта был рассмотрен эффект Ганна и его использование, в диодах, работающих в генераторном режиме. Были приведены различные типы работы диода: доменный режим, режимы ОНОЗ. Приведены конструкции генераторов, а так же усилителя на диоде Ганна, приведены расчеты, описаны принципы работы.
Приложение.
Обозначения основных величин, принятые в работе.
Ec - энергия соответствующая дну запрещённой зоны
EF - фермиевская энергия
Ek - энергетическая ступень, образующаяся в p–n-переходе
Emax - максимальная напряжённость электрического поля
Ev- энергия соответствующая потолку валентной зоны
Fi - электрическая энергия
Fip (Fin) - электростатическая энергия в p (n)-области
j - плотность тока
jg0 - плотность тока термогенерации носителей заряда
jngp0 (jpgp0) - плотность дрейфового тока, текущего через p-n-переход из n-области (p-области) в p-область (n-область)
jngup0 (jpgup0) - плотность диффузионного тока, текущего через p-n-переход из n-области (p-области) в p-область (n-область)