Смекни!
smekni.com

Разработка системы автоматических звонков в учреждении образования (стр. 2 из 5)

Принцип действия предложенного устройства следующий: микросхема К176ИЕ12 представляет собой два счётчика. Первый – с коэффициентом деления 215 с подключаемым внешним кварцевым резонатором. Он используется для генерации секундных импульсов. Второй – с коэффициентом деления 60. Используется для генерации минутных импульсов. Счётчики соединены так, что секундный сигнал с выхода первого поступает на вход второго.

Ввиду того, что микросхемы микроконтроллера и счётчика построены на разных типах логики, для согласования по току и напряжению, я использовал транзистор VT1. Это транзистор с индуцированным каналом, следовательно, микросхемы напрямую не соединены друг с другом. Выходной сигнал счётчика лишь коммутирует питание на вход микроконтроллера. Для этого можно использовать почти любой транзистор с индуцированным каналом n-типа. В режиме отсечки на входе микроконтроллера будет 0, в режиме насыщения – 1. В качестве этого транзистора предлагаю использовать КП303А. Этот же транзистор предлагаю использовать как ключ для включения реле.

Микроконтроллер с помощью программы обрабатывает входящий минутный сигнал и выдает импульс звонка, который коммутирует питание на реле с помощью транзистора VT2.

Реле в свою очередь коммутирует напряжение 220 В на звонки.

1.4.4 Расчёт потребляемой мощности

В соответствии с документацией, потребляемый микросхемой К176ИЕ12 ток составляет 25 мкА. При напряжении питания 9 В. Рассчитаем потребляемую мощность:

P = UI = 9 * 0,000025 = 0,000225 Вт.

Потребляемый ток микроконтроллера, в соответствии с технической документацией, в рабочем режиме составляет 0,3 мА. При напряжении питания 5 В. Рассчитаем мощность:

P = UI = 5 * 0,0003 = 0,0015 Вт.

Ток на резисторах R1-R16, R18-R24 незначителен, поэтому примем потребляемую ими мощность как 0,05 Вт.

Как было посчитано выше, потребляемая мощность на резисторе R17 составляет 0,1 Вт.

Итого потребляемая мощность схемы:

P = 0,05 + 0,000225 + 0,0015 + 0,1 = 0,151725 Вт.


1.5 Разработка программного обеспечения

Для разработки программного обеспечения был использован Ассемблер микроконтроллеров ATMEL серии AT90S, все команды которого изложены в Приложении 1.

Начальным этапом создания программного обеспечения стала разработка блок схемы будущей программы.

Рис. 3 Схема алгоритма программы


Для реализации заданного алгоритма, предлагаю использовать следующий текст программы:

ORG 0

JMP reset

RETI

reset:LDI R16,00h

LDI R17,00h

M1:CPI R17,06h

BREQ M2

LDI R18,01h

OUT PINB,R18

LDI R18,05h

OUT TCCR0,R18

LDI R18,00h

M3:IN R19,TCNT0

CPI R19,E0h

BRPL M3

LDI R19,00h

OUT TCNT0,R19

INC R3

BRSH M3

LDI R18,00h

OUT PINB,R18

M2:LDI R18,06h

OUT TCCR0,R18

LDI R18,00h

OUT TCNT0,R18

M4:IN R18,TCNT0

CPI R18,45d

BRNE M4

CPI R17,06h

BREQ M5

LDI R18,01h

OUT PINB,R18

LDI R18,05h

OUT TCCR0,R18

LDI R18,00h

M7:IN R19,TCNT0

CPI R19,E0h

BRPL M7

LDI R19,00h

OUT TCNT0,R19

INC R3

BRSH M3

LDI R18,00h

OUT PINB,R18

M5:LDI R18,06h

OUT TCCR0,R18

LDI R18,00h

OUT TCNT0,R18

M6:IN R18,TCNT0

CPI R18,10d

BRNE M6

INC R16

CPI R16,10d

BRNE M1

LDI R16,00h

LDI R19,00h

LDI R18,06h

OUT TCCR0,R18

LDI R18,00h

OUT TCNT0,R18

M8:IN R18,TCNT0

CPI R19,03h

BRNE M9

CPI R18,77d

BREQ M10

M9:CPI R18,FFh

BRNE M8

INC R19

LDI R18,00h

OUT TCNT0,R18

JMP M8

M10: INC R17

CPI R2,07h

BRNE M1

LDI R2,00h

JMPM1


2. КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКИЙ

2.1 Разработка печатной платы

Печатная плата была разработана на основе принципиальной схемы с помощью программы RuLay. Ниже приведен её рисунок:

Рис. 4 Печатная плата

Реальный размер платы 10х10 см.

2.2 Выбор способы изготовления печатной платы

Печатные платы представляют собой диэлектрическую основу с нанесенным на нее токопроводящим рисунком (печатным монтажом) и отверстиями для монтажа элементов.

Печатный монтаж – это нанесение на изоляционное основание тонких электропроводящих покрытий (печатных проводников), выполняющих функции монтажных проводов для соединения элементов схемы.

Печатные платы служат для размещения и закрепления элементов устройства на одном основании, а печатный монтаж обеспечивает связь между этими элементами в соответствии с принципиальной схемой устройства.

Наряду с традиционным проводным монтажом печатные платы являются основным этапом в подготовке устройства к производству и имеют ряд преимуществ, т. е. они позволяют:

· Увеличить плотность монтажных соединений и возможность миниатюризации компоновки радиоэлементов и блоков внутри устройства;

· Организовать изготовление печатных проводников и электрорадиоэлементов в одном технологическом цикле;

· Гарантированная стабильность и повторяемость электрических характеристик;

· Повышенная стойкость устройства к климатическим и механическим воздействиям;

· Провести унификацию конструкторских и технологических решений;

· Увеличить надежность;

· Организовать комплексную автоматизацию работ по изготовлению устройства;

По конструктивному исполнению все печатные платы можно подразделить на: односторонние, двухсторонние, однослойные и многослойные.

Односторонние печатные платы представляют собой диэлектрическое основание, на одной стороне которого выполнен печатный монтаж, а на другой стороне размещаются элементы устройства.

У двухсторонних печатных плат печатный монтаж выполнен на двух сторонах, а переход токопроводящих линий осуществляется металлизированными контактными отверстиями. Такое исполнение печатной платы позволяет обеспечить большую плотность размещения печатных проводников.

Многослойные печатные платы состоят из чередующихся слоев материала с проводящим рисунком, соединенных клеевыми прокладками в монолитное основание путем прессования. Такое исполнение печатной платы позволяет обеспечить наибольшую плотность и надежность печатного монтажа, что в свою очередь позволяет уменьшить габаритные размеры печатной платы.

Теперь рассмотрим более подробно методику нанесения токопроводящего рисунка на подложку печатной платы. Существует несколько способов:

1 Химическое травление;

2 Электрохимическое осаждение;

3 Комбинированный.

Наиболее распространенным из этих методов является метод химического травления.

Организация процесса химического травления фольгированного материала осуществляется при помощи специально изготавливаемых для этих целей химических составов. Существует широкая номенклатура таких реактивов, большинство из которых довольно легко можно изготовить даже в домашних условиях. Наиболее простыми способами травления фольгированного материала в процессе изготовления печатной платы является:

1 Участки фольги, которые на полученном рисунке должны остаться в виде проводников, покрывают нитролаком, или клеем БФ, подкрашенным несколькими каплями чернил. После высыхания краски рисунок проверяют на соответствие чертежу и при необходимости корректируют его. Затем в стакане холодной воды растворяют 4 – 6 таблеток перекиси водорода и осторожно добавляют 15 – 25 мл концентрированной серной кислоты. Раствор выливается в стеклянную или керамическую емкость, в которую помещается плата. Время травления в данном растворе примерно 1 час.

2 Раствор хлорного железа в воде: в 200 мл воды растворяют 150 г хлорного железа в порошке. Для приготовления хлорного железа берут 9%-ную соляную кислоту и мелкие железные опилки. На 25 объемных частей кислоты берут одну часть железных опилок. Опилки засыпают в открытый сосуд с кислотой и оставляют на несколько дней. Через 5 – 6 дней раствор окрасится в желто-бурый цвет, что означает готовность раствора к применению.

3 Травление платы в концентрированном растворе азотной кислоты занимает 1 –5 минут, но требует осторожности. После травления плату тщательно промывают водой с мылом.

Существует также механический способ изготовления печатной платы без применения химикатов. Данный процесс осуществляется следующим образом: требуемых размеров плату вырезают из фольгированного материала, сверлят все необходимые отверстия и наносят на нее рисунок печатного монтажа. Контуры обводят острым шилом. Фольгу с там, где это необходимо снимают при помощи резака. Для изготовления платы средней сложности приведенным способом затрачивается 1,5 – 2 часа. При применении данного метода незначительно ухудшается качество платы.

Для изготовления печатной платы, я буду использовать метод травления в хлорном железе. Этот метод выбран из-за своей доступности и простоты исполнения. Нанесение рисунка дорожек будет осуществлено путём переноса тонера с распечатки на термобумаге. Это позволит существенно повысить качество изготовления печатной платы, в сравнении с методом ручного переноса.

2.3 Разработка компоновки устройства

Устройство можно исполнить в виде коробки габаритными размерами 13х11х8 см. На крышке предлагаю разместить управляющие кнопки. В корпусе следует предусмотреть отверстие для подключения блока питания и возможность установки элементов питания для микросхемы К176ИЕ12. В качестве такого элемента питания можно использовать батарейку типа "Крона". Ниже привожу примерный рисунок компоновки устройства.

Рис. 5 Компоновка

2.4 Поиск и устранение неисправностей

В данном устройстве используется минимум элементов, подверженных старению, чьи характеристики ухудшаются с течением времени. Это является фактором, существенно повышающим надёжность системы.

В месте с тем, в целях удешевления и упрощения устройства, я отказался от индикации. Это несколько усложняет процесс поиска неисправностей, если они всё же возникнут. Поэтому для того, чтобы выявить неисправность с большой долей вероятности потребуется осциллограф.