Задача: определить обратный ток коллекторного перехода Iк.обр.
Обратный ток коллекторного перехода состоит из 3х компонент: теплового тока; тока термогенерации; тока обусловленного рекомбинацией на поверхности базы:
Iк.обр = Iко + Iген + Iрек.б (39).
1. Тепловой ток слагается из 2х компонент:
Iко = Iкоб + Iкок (40).
Здесь токи Iкоб и Iкок токи ННЗ, попадающих в переход из областей базы и коллектора соответственно:
(41), (42).Iкоб = 8,450151*10-9 А,
Iкок = 1,46633*10-7 А,
Iко = 1,658616*10-7 А.
2. Ток термогенерации коллекторного перехода Iген при заданном напряжении на коллекторном переходе много больше jk:
Iген =
(43),Iген = 2.63 10-7 А.
3. Ток поверхностной рекомбинации Iрек.б пропорционален величине поверхности, на которой происходит рекомбинация. В данном случае эту роль играет верхняя часть поверхности диффузионного слоя Аn:
Аn = (p - d) + pd2 (44).
Скорость поверхностной рекомбинации S = 900 см/с
(45),Iрек = 9 10-8 А.
Далее по формуле (39) находим Iк.обр:
Iк.обр = 7,715074*10-7 А.
Задача: Определение величины Ikmax или Pkmax, а также толщины кристалла – заготовки и других элементов кристаллической структуры.
1. Определение допустимого значения теплового сопротивления.
Тепловое сопротивление RT связывает перепад температур DT между коллекторным переходом и окружающей средой с мощностью, рассеиваемой в переходе Рк:
DT = RT Рк = RT Uк Iк (46).
Тепловое сопротивление корпуса RTк = 0.1 К/мВт.
Тепловое сопротивление транзисторной структуры RTСТ:
RT = RTСТ + RTк (47).
RT находим из формулы (46)
RT = DT/ Рк = 0,783334 К/мВт.
DT = Tk.max – Tокр.ср = 70 – 25 = 45о.
Из соотношения (47) находим RTСТ:
RTСТ = RT - RTк = 0,683333 К/мВт.
2. Расчет величин теплового сопротивления транзисторной структуры:
RTСб =
(48),RTСб = 0,06578575*4,16=0,2704 К/мВт.
Rт=RTCT + RТК = 0,27+0,1=0,37 К/мВт.
5.7.1 Максимальная расчётная мощность находится по формуле (49)
, (49) мВт5.7.2 Рассчитаем максимальное напряжение коллектора воспользовавшись соотношением (50) Uк max =
, (50)Где:
- удельное сопротивление коллектора =0,9903 Ом*см - низкочастотное значение коэффициента передачи тока в схеме с общей базой, =0,991=0,8
Uк max=15,565 В.
5.7.3 Максимальный ток коллектора Iк max ищется из соотношения (51)
Iк max=
, (51)Подставляя в формулу (51) рассчитанные значения Uк max и Pк max
Iк max=7,812399 мА
Упрощённая структурная схема для расчёта тепло отвода дрейфового транзистора.
Рис. 4
Конструктивно корпус состоит из двух основных элементов: основания и баллона. Основание включает в себя: фланец, изолятор и выводы. Баллон представляет собой чашечку с буртиком. Для маломощных биполярных транзисторов наиболее подходящие металостеклянные корпуса типов КТ-1 и КТ-2.
Корпус КТ-1, металлостеклянный, герметизируемый электроконтактной сваркой. Фланец основания представляет собой металлическую чашку, заполненную стеклом (изолятор), через которое проходят выводы, имеющие буртик для герметизации электроконтактной сваркой. Корпус имеет корпусной вывод, который приварен ко дну фланца. Баллон корпуса представляет собой полый цилиндр с дном, который надевается на наружный диаметр чашки фланца.
Такая конструкция полностью гарантирует отсутствие попадания выплесков при сварке внутрь рабочего объема корпуса. Данный корпус обладает высокой надежностью за счет удачной конструкции металлостеклянного изолятора, имеющего большую протяженность спая, и относительно большого объема стекла, размещенного внутри полого металлического фланца, фланец корпуса и выводы изготавливаются, как правило, из сплава 29НК (ковар), стекла марки С48-2. Заготовка стекла представляет собой таблетку с отверстиями. Баллон изготавливается из стали или никеля. Металлические детали корпуса в зависимости от типов транзисторов, для которых может быть применен этот корпус, покрываются никелем или золотом, а наружные концы выводов облуживаются. Сам корпус после герметизации для защиты от внешних климатических воздействий может иметь гальваническое или лакокрасочное покрытие.
В этом корпусе как у нас, так и за рубежом выпускается много типов маломощных транзисторов с рабочими частотами до 1,5 ГГц, предназначенных как для бытовой, так и для специальной аппаратуры.
Возможность монтажа в корпусе планарного или сплавно-диффузионного перехода, то есть кристалл припаивается коллекторным выводом непосредственно к фланцу, и корпус является коллекторным внешним выводом. При этом максимальные размеры кристалла могут быть 1,8х1,8 мм. Конструкция корпуса позволяет производить напайку кристалла как мягкими припоями, так и эвтектическими припоями золото-кремний и золото-германий. Возможность монтажа кристалла, когда необходимо, чтобы он был электрически изолирован от корпуса или когда необходимо иметь малые значения емкости коллектор - база Ск. В этом случае напайка кристалла производится непосредственно на один из изолированных выводов корпуса, конец которого расплющен и лежит на стекле изолятора. Это позволяет иметь значение Ск в корпусе около 0,3 пф.
Конструкция этого корпуса позволяет удобно монтировать транзистор в аппаратуре. Наличие гибких выводов и строгая цилиндрическая форма баллона позволяет монтировать транзистор непосредственно на печатную плату или фиксировать его в специальном гнезде. Кроме того, строгая цилиндрическая форма баллона позволяет надевать в случае необходимости специальный теплоотводящий элемент, улучшая тем самым отвод тепла от прибора и увеличивая рассеиваемую мощность транзистора.
Корпус КТ-2, (TO-5 - зарубежное обозначение), металлостеклянный, герметизируемый электроконтактной сваркой, аналогичен по своей конструкции корпусу КТ-1 и имеет только несколько большие размеры. Его конструкция обладает такой же надежностью, отличается такой же простотой и технологичностью конструкции, как и корпус КТ-1. В этом корпусе можно монтировать все существующие типы переходов маломощных транзисторов, а также кремниевые транзисторы средней мощности (до 5Вт) при условии использования дополнительного теплоотвода.
Возможность монтажа в корпусе планарной или сплавно-диффузионной структуры показана, когда кристалл своим коллекторным электродом напаивается непосредственно на фланец основания. При этом кристалл может иметь максимальные размеры 3,5 х 3,5 мм.
Возможность монтажа в корпусе планарной или сплавно-диффузионной структуры, когда ее необходимо электрически изолировать от корпуса. В этом случае кристалл напаивается на один из изолированных выводов, конец которого расплющен.
Вариант монтажа в этом корпусе славного перехода с кристаллом размером 2,6х2,6 мм с помощью кристаллодержателя. Этот корпус, так же как и КТ-1, удобен для монтажа в нем всех типов кристаллов, монтажа транзисторов в аппаратуре, позволяет легко надевать на цилиндрическую часть баллона дополнительный теплоотвод.
Данный корпус нашел широкое применение за рубежом как для маломощных и средней мощности (до 5 Вт) транзисторов, так и для интегральных схем. Недостатком корпусов КТ-1 и КТ-2 является возможность газовыделения во внутренний объем корпуса при герметизации. Это недостаток всех горячесварочных корпусов, но он преодолевается применением защиты сплавных и сплавнодиффузионных структур различными лаками, компаундами, цеолитом.