Саратовский Государственный Технический
Университет
Кафедра «Электронные приборы и устройства»
На тему:
«Расчёт и проектирование маломощных биполярных транзисторов»
Выполнил: ст. Козачук В. М.
Проверил: доц. Торопчин В. И.
САРАТОВ 1999г.
3.1 Техническое задание......................................................................... 2
3.2 Параметры, выбранные самостоятельно........................................... 2
3.3 Перечень используемых обозначений............................................... 3
4. Выбор технологии изготовления транзистора...................... 5
4.1 Сплавно-диффузионные транзисторы............................................... 5
4.2 Структура сплавно-диффузионного p-n-p.......................................... 7
5.1 Расчёт толщины базы и концентраций примесей.............................. 8
5.2 Расчет коэффициента передачи тока............................................... 11
5.3 Расчет емкостей и размеров переходов.......................................... 11
5.4 Расчет сопротивлений ЭС и граничных частот............................... 12
5.5 Расчет обратных токов коллектора.................................................. 14
5.7 Расчёт эксплутационных параметров.............................................. 15
6. Выбор корпуса транзистора............................................................. 16
7. Обсуждение результатов................................................................... 18
9. Список используемой литературы............................................ 20
Используемые физические свойства полупроводника известны и используются с конца 19 века. При изобретении радио А.С. Поповым был применен порошковый когерер, в котором использовались нелинейные свойства зернистых структур. В 1923-1924 гг. Лосев О.В. обнаружил наличие отрицательного дифференциального сопротивления и явление люминесценции в точечных контактных сопротивлениях карбида кремния. В 1940 году был изготовлен первый точечный диод. В 1948 году американский физик Дж. Бардии, а также И.Браштейн разработали и изготовили точечно-контактный транзистор, в 1952 г. впервые были созданы промышленные образцы плоскостных транзисторов. В 1956 г. началось производство транзисторов с базой, полученной методом диффузии. В начале 60-х годов была применена планарная технология изготовления транзисторов. В настоящее время рабочие частоты транзисторов достигают 50 ГГц. По уровню рассеиваемой мощности транзисторы делятся на маломощные, средней и большой мощности.
Задачей выполнения курсового проекта является разработка маломощного биполярного транзистора в диапазоне, средних и высоких частот.
Целью работы над проектом является приобретение навыков решения инженерных задач создания дискретных полупроводниковых приборов, углубление знаний процессов и конструктивно технологических особенностей биполярных маломощных транзисторов.
Техническое задание содержит требования к параметрам и условиям эксплуатации практикуемого прибора. В данном случае наиболее существенны следующие параметры:
1. Номинальный ток коллектора Iк ном=9мА.
2. Номинальное напряжение коллектора Uк ном=13В
3. Верхняя граничная частота fa=90МГц
4. Максимальная рассеивающая мощность Рк мах=60мВт
5. Максимальное напряжение коллектора Uк мах=18В
6. Максимальный ток коллектора Iк мах=12мА
7. Максимальная рабочая температура транзистора Тк мах=74°С
8. Коэффициент передачи тока в схеме с ОЭ β=65
1. Время жизни ННЗ τср=5мкс
2. Материал кристалла Ge
3. Тип структуры p-n-p
4. Ёмкость коллекторного перехода Ск=2пФ
5. Коофициент запаса по частоте F Х1=1,3
6. Перепад Nб Х2= 500
7. Отношение концентраций NОЭ/ Nб=3
8. Толщина диффузионного слоя hдс= мкм
9. Скорость поверхностной рекомбинации Sрек= слус
Ak - площадь коллектора;
Аэ - площадь эмитера;
a - градиент концентрации примесей;
- отношение подвижностей электронов и дырок;Сз.к зарядная (барьерная) емкость коллекторного перехода;
Сд.э - диффузионная емкость эмитерного перехода;
Сз.э - зарядная (барьерная) емкость эмитерного перехода;
Дп, Др - коэффициенты диффузии электронов и дырок;
Днб, Доб - коэффициенты диффузии не основных и основных носителей в базе;
Днэ, Доэ - коэффициенты диффузии не основных и основных носителей в эмиттере;
Е — напряженность электрического поля;
De - ширина запрещенной зоны;
¦ - частота;
¦a - граничная частота коэффициента передачи тока в схеме с общей базой;
¦Т » ¦b - граничная частота коэффициента передачи тока в схеме с общим эмитером;
¦max - максимальная частота генерации;
hkp - толщина кристалла;
hэ, hk — глубина вплавления в кристалл эмитера и коллектора;
Ln, Lp - средние диффузионные длины электронов и дырок;
Lнб, Lнэ средние диффузионные длины не основных носителей в базе и эмитере;
Nб, Nk, Nэ — концентрации примесей в базе, коллекторе и эмитере сплавного транзистора;
Nб(х) - концентрация примеси, формирующей проводимость базы дрейфового транзистора;
Nэ(x) - концентрация примеси, формирующей проводимость эмиттера дрейфового транзистора;
ni - равновесная концентрация электронов в собственном полупроводнике;
nn, np - равновесные концентрации электронов в полупроводниках n - типа и p - типа;
Р - мощность, рассеиваемая в коллекторе;
Pk max - предельно допустимая мощность, рассеиваемая в коллекторе;
Рэ - периметр эмитера;
Рn, Рp - равновесные концентрации дырок в полупроводниках n -типа и p - типа;
Rб, Rэ, Rк - радиусы электродов базы, коллектора, эмитера;
Rm, - тепловое сопротивление;
rб - эквивалентное сопротивление базы;
rб’, rб’’ - омическое и диффузное сопротивление базы;
rэ - сопротивление эмитера без учета эффекта Эрле;
rэ’ - сопротивление эмитера с учетом эффекта Эрле;
S — скорость поверхностной рекомбинации;
Т — абсолютная температура;
Тк — температура корпуса транзистора;
Тmax - максимально допустимая температура коллекторного перехода;
W - геометрическая толщина базы;
Wg — действующая толщина базы;
Uэб - напряжение эмитер-база;
Uкб - напряжение коллектор-база;
Ukpn - контактная разность потенциалов;
Uпроб - напряжение пробоя;
Uпрок - напряжение прокола транзистора;
Uк - напряжение коллекторного перехода;
Uk max - максимально допустимое напряжение на коллекторе;
Iэ — ток эмитера;
Iб — ток базы;
Iко — обратный ток коллектора при разомкнутом эмиттере;
Ikmax - максимально допустимый ток коллектора;
Iген - ток термогенерации в области объемного заряда;
Iрек — ток рекомбинации;
a - коэффициент передачи тока в схеме с общей базой;
aо - низкочастотное значение a;
a* — коэффициент усиления тока коллекторного перехода за счет не основных носителей заряда;
b — коэффициент передачи тока в схеме с общим эмитером;
g — коэффициент инжекции эмитера;
бк — толщина коллекторного перехода;
e - относительная диэлектирическая проницаемость;
cо – коэффициент переноса не основных носителей заряда через область базы;
mэ, mб – подвижности электронов и дырок;
mнб, mоб – подвижности не основных и основных носителей заряда в базе;
mнэ, mоэ – подвижности не основных и основных носителей заряда в эмитере;
w - круговая частота;
r - удельное сопротивление полупроводника;
ri - удельное сопротивление собственного полупроводника;
rэ, rб, rк - удельные сопротивления эмитера, базы, коллектора;
tn,p – среднее время жизни электронов и дырок
ttnp – время пролета не основных носителей заряда через базу;
tn – среднее время жизни носителей заряда, обусловленное поверхностной рекомбинацией;
s - удельная теплопроводность;
Основным элементом конструкции транзистора является кристалл, или транзисторная структура кристалла, которая представляет собой полупроводниковую пластину со сформированными на ней эмиттерным (ЭП) и коллекторным (КП) переходами. Другими элементами конструкции являются корпус, кристаллодержатель, выводы.