Уменьшение скорости холостого хода с одновременным ростом тока холостого хода из-за наличия постоянных
и приводит к ухудшению энергетических характеристик. Поэтому при построении электропривода на базе вентильной машины принимаются меры по устранению этого недостатка.Для устранения этой нелинейности следует осуществлять управление с обратной связью по току и поддержанием
.Электропривод с вентильной машиной
При синтезе регулятора в электроприводе с вентильной машиной внутренний контур тока с постоянными
и целесообразно заменить одним апериодическим звеном с постоянной времени . При построении электропривода на базе вентильной машины одним из основных требований является наличие замкнутых контуров регулирования токов , . Это позволяет поддерживать в переходных и установившихся режимах и, тем самым, существенно улучшить энергетические характеристики.Модель электропривода, в которой использована математическая модель вентильной машины (рис. 10) показана на рис. 18. Результаты моделирования при использовании в электроприводе двигателей ДБМ150-4-1,5-2 и ДБМ185-6-0,2-2 приведены на рис. 19 и 20.
Рис. 18. Модель электропривода с вентильной машиной.
Рис. 19. Переходные процессы в электроприводе при использовании двигателя ДБМ150-4-1,5-2.
Рис. 20. Переходные процессы в электроприводе при использовании двигателя ДБМ185-6-0,2-2.
В модели, рассмотренной выше регуляторы тока реализованы во вращающейся системе координат. При этом обратная связь охватывает оба инерционные звена с постоянными времени
и . Существует иной вариант построения контура тока, когда обратная связь осуществляется в неподвижной системе координат. При этом в системе автономный инвертор-машина реализуется «токовый коридор», а инерционное звено с постоянной времени не охватывается отрицательной обратной связью по току. В итоге в канале регулирования скорости остаются апериодическое звено с постоянной и интегрирующее звено с постоянной . При синтезе скоростного контура на оптимум по модулю передаточная функция регулятора соответствует пропорциональному звену с коэффициентом усиления .Регулятор PID 2 представляет собой пропорционально-интегральный регулятор с передаточной функцией
Таким образом, получаем передаточную функцию разомкнутого контура по току
Соответственно, после замыкания получаем апериодическое звено с постоянной времени
Регулятор PID 3 также представляет собой пропорционально-интегральный регулятор с передаточной функцией
Аналогично предыдущему случаю, получаем передаточную функцию разомкнутого контура по току
Соответственно, после замыкания получаем апериодическое звено с постоянной времени
Модель электропривода с вентильной машиной, выполненная с использованием виртуальных блоков из библиотеки Power System Blockset представлена на рис. 21.
Рис. 21. Модель электропривода с вентильной машиной.
Блоки, относящиеся к системе управления: преобразователь вращающихся координат
, в неподвижные А, В, С (блок dq – А,В,С), гистерезисный регулятор тока (блок Current Regulator). Трехфазный автономный инвертор здесь реализован на MOSFET транзисторах, окно настройки магнитоэлектрического синхронного двигателя показано на рис. 22. в качестве двигателя взят ДБМ150-4-1,5-2.Рис. 22. Окно настройки магнитоэлектрического синхронного двигателя.
Датчик положения ротора реализован в преобразователе координат, на вход Teta которого подаётся угол поворота ротора, умноженный на число пар полюсов плюс начальный угол установки, равный 90 электрических градусов. Таким образом, смонтирована установка ДПР, в которой
.Приложение 1
Паспортные данные двигателей ДБМ150-4-1,5-2 и ДБМ185-6-0,2-2
Тип машины | Момент номинальный (Н·м) | Число пар полюсов | Число фаз | Сопротивление фазы (Ом) | Электромагнитная постоянная времени (мс) | Ток короткого замыкания(А) | Момент короткого замыкания(Н·м) | Скорость холостого хода (об/мин) | Тепловое сопротивление(град/Вт) | Момент инерции(кг·м2) | Масса(кг) |
ДБМ150-4-1,5-2ДБМ185-6-0,2-2 | 44 | 88 | 32 | 0,052,64 | 1,21,4 | 34010,2 | 47,311,5 | 1750195 | 0,20,15 | 3е-39е-3 | 3,05,4 |
Приложение 2
Расчёт относительных переменных и параметров для двигателя ДБМ150-4-1,5-2
Базовые величины определяем по зависимостям:
Относительные параметры:
Приложение 3
Расчёт относительных переменных и параметров для двигателя ДБМ185-6-0,2-2
Базовые величины определяем по зависимостям:
Относительные параметры:
Приложение 4
Общее описание двигателей серии ДБМ
ДБМ - двигатели бесконтактные моментные. Двигатель состоит из синхронного двигателя, выполненного в виде плоской, встраиваемой конструкции с многополюсным ротором коллекторного типа, содержащей редкоземельный магнит и двухфазные или трёхфазные обмотки статора. Существуют два вида статора: гладкий и пазовый статор (см. рис. 1 а,б).
Серия двигателей имеет 26 типоразмеров, номинальное напряжение питания 27 В. Пульсации момента по углу поворота для двигателей с гладким статором 3-5%, а с пазовым ротором 10%.