Вся совокупность логических каналов, используемых в сети GPRS, и их направленность представлены на рис. 15.5.
15.4. ПротоколыпередачиданныхвсетиGPRS
Как уже говорилось, для реализации пакетной передачи данных сеть GSMдополняется рядом новых интерфейсов, поддерживаемых соответствующими протоколами, реализация которых основана на принципах семиуровневой модели ВОС. Всю совокупность таких протоколов можно условно подразделить на Два класса:
• протоколы передачи данных, используемые для передачи данных от абонентов и выполнения контролирующих функций; :• протоколы передачи сигнальной информации, используемые для передачи служебной информации и поддержки функций передачи данных.
Протоколы, используемые для передачи абонентских данных, спецификациях GPRSпринято называть плоскостью передачи TransmissionPlane), а протоколы, используемые для передачи
сигнальной информации, — сигнальной плоскостью (SignalingPlane).
Как уже говорилось в гл. 14, пользовательские данные пересылаются в виде пакетов, называемых дейтаграммами (или IP/X.25-блоками), и на рис. 15.6 представлена структура протоколов передачи таких пакетов между наиболее важными узлами сети GPRS. Рассмотрим прежде всего назначение основных протоколов, связанных с передачей данных в Um-интерфейсе.
ПротоколыпередачиданныхвUm-интерфейсе
В целях более гибкого использования протоколов в Um-интерфейсе физический уровень модели ВОС разделен на два подуровня: радиочастотный подуровень (RF — RadioFrequency) и подуровень физического канала (PHL— PHysicalLink).
Протоколы радиочастотного подуровня определяют структуру радиоканала, в частности параметры несущего колебания, схему модуляции, характеристики приемопередающих устройств. Радиоинтерфейс сети GPRSсовпадает с радиоинтерфейсом Umсети GSM.
Протоколы подуровня физического канала обеспечивают распределение ресурсов единого канала между мобильными абонентами и их соединение с сетью. На этом подуровне закладывается механизм прямой коррекции ошибок (FEC— ForwardErrorCorRection), позволяющий обнаруживать и исправлять неправильно Переданные пакеты данных. Кроме того, на этом подуровне производится поддержка разбиения блоков более высокого канального уровня на совокупность МДВР-кадров, т.е. каждый блок вы-Кнестояшего уровня разбивается на четыре временных кадра. На Конец, подуровень физического канала содержит в себе возможности дальнейшей модернизации сети.
Протоколы канального уровня тесно связаны между собой и в совокупности обеспечивают высоконадежную передачу данных по радиоинтерфейсу.
Протокол контроля доступа к среде (MAC — MediumAccessControl) устанавливает канал и мультиплексирует данные, и на него возложены следующие функции:
• обеспечение эффективного мультиплексирования данных и контроля сигнальной информации в восходящем и нисходящем каналах. При этом в нисходящем канале мультиплексирование контролируется заранее предопределенным механизмом расписания, а в восходящем — определяется для каждого пользователя в отдельности, например при ответе на запрос услуги;
• обеспечение доступа к установленному мобильному каналу передачи, разрешение конфликтов между отдельными попытками доступа к каналу различных абонентов;
• обеспечение доступа к разорванному мобильному каналу передачи, фиксирование попыток доступа к разорванному каналу, включая организацию очереди пакетов;
• установление приоритета обработки пакетов.
На протокол контроля радиоканала (RLC — RadioLinkControl) возложено выполнение следующих функций:
• установление и обеспечение связи между уровнем управления среды доступа и уровнем управления логическим соединением;
• сегментацию и восстановление пакетов данных при переходе их с одного уровня иа другой;
• обратную коррекцию ошибок — процедуру, включающую в себя изъятие повторно переданных ошибочных кодовых слов (сам механизм коррекции ошибок обеспечивается на физическом уровне).
Описанные задачи протоколов RLC/MACреализуются в блоке управления пакетом и в блоке канального кодирования (см. подразд. 15.1), являющихся составной частью модифицированной БС.
Блок управления пакетом выполняет следующие функции:
• сегментацию LLC-блока (см. далее) на RLC-блоки в восходящем канале;
• восстановление LLC-блоков из RLC-блоков в нисходящем канале:
• формирование канала пакетной передачи данных в восходя-щем и нисходящем каналах;
• организацию автоматического запроса повторной передачи (ARQ— AutomaticRepetitionQuery) RLC-блоков;
• управление доступом к каналу;
• контроль ресурсов радиоканала (питания, перегрузки и т.п.).
В блоке кодирования осуществляются следующие операции:
• помехоустойчивое кодирование, включающее в себя прямую коррекцию ошибок и перемежение;
• вычисление параметров радиоканала (уровня принимаемого сигнала, текущего QoSи др.).
Протокол управления логическим соединением (LLC — LogicalLinkControl) обеспечивает логическое соединение между МС и ОУ, даже если в этот момент нет их физического соединения на более низком уровне, т. е. если абонентские пакеты в этот момент не передаются. Будучи независимым от протоколов более низких уровней, этот протокол одновременно предоставляет надежный и безопасный логический канал для протоколов более высоких уровней.
Протокол LLCобеспечивает поддержку канала передачи данных с шифрованием между МС и ОУ. При этом соединение поддерживается при пересечении границ сот, обслуживаемых одним ОУ, в случае же обслуживания сот разными ОУ существующее соединение освобождается и устанавливается новое соединение с новым ОУ. Заметим, что прямое соединение между двумя МС не поддерживается. Данный протокол независим от базовых протоколов радиоинтерфейса, и при обеспечении возможности работы его с различными протоколами радиоинтерфейса может возникнуть необходимость выполнения некоторых настроек, например длины LLC-блока или показания таймера (максимальная длина LLC-блока составляет 1 600 байт).
Для протокола управления логическим соединением определено два режима работы: с подтверждением и без подтверждения. В режиме с подтверждением происходит повторная ретрансляция данных в случае отсутствия подтверждения в течение отведенного интервала времени.
В режиме без подтверждения, в котором передаются короткие сообщения и сигнальная информация, не требуется ответа на передаваемые данные. При этом информация может передаваться как в защищенном, так и незащищенном виде.
На уровне LLC обеспечиваются:
• передача LLC-блоков между МС и ОУ в режиме точка—точка с подтверждением и без подтверждения;
• доставка LLC-блоков от ОУ к МС в режиме точка—много точек;
контроль потока LLC-блоков между МС и ОУ;
кодирование LLC-блоков;
• обнаружение и восстановление ошибочных (потерянных) LLC-блоков.
Взаимодействие протоколов физического и канального уровней в Um-интерфейсе, т.е. последовательное преобразование LLC-j&ioKOBво временные кадры иллюстрирует рис. 15.7. . Протокол зависимого сближения (SNDCP— SubNetwork•DependentConvergenceProtocol) относится к сетевому уровню взаимодействия. Главная его задача заключается в установлении точек доступа к протоколам более высокого и более низкого уровней. Кроме того, в функции данного протокола также входит обес
печение сжатия, сегментации и мультиплексирования пакетов данных.
На рис. 15.8 показан пример действия протокола пакетной передачи данных (PDP— PacketDataProtocol) на уровень LLC. Определение идентификатора точки доступа (NSAPI— NetworkServiceAccessPointIdentifier) осуществляется посредством анализа специального набора параметров данного протокола — так называемого PDP-контекста. Вычисленный NSAPIзатем помещается в заголовок LLC-блока в целях указания приложения, к которому принадлежат пакеты. Заметим, что один PDPможет иметь несколько PDP-контекстов и, следовательно, несколько различных точек доступа.
ПротоколыпередачиданныхвGb-интерфейсе
Gb-интерфейс обеспечивает мультиплексирование данных от различных пользователей в одном физическом канале посредством применения технологии ретрансляции кадров (FR— FrameRelay), заключающейся в том, что пользователю при передаче или получении данных предоставляются физические ресурсы системы, которые высвобождаются по окончании процесса приема-передачи. Такая ситуация, очевидно, существенно отличается от ситуации в традиционной GSM, где один пользователь имеет право на физические ресурсы (в одном слоте) на все время соединения независимо от состояния ее активности.
При использовании указанной технологии между ОУ и БС устанавливается постоянное виртуальное соединение (PVC— PermanentVirtualCircuit), обеспечивающее передачу LLC-блоков, в которых 2 байт отводится на адресное поле, а максимальный размер информационного поля составляет 1 600 байт. При этом поддерживается механизм обнаружения ошибок без восстановления искаженных (утерянных) блоков.
Скорость передачи в Gb-интерфейсе может варьироваться для каждого отдельного пользователя вплоть до максимального значения 2 Мбит/с.
Протокол передачи пакетов в подсистему базовых станций (BSSGP— BaseStationSubsystemGPRSProtocol) обеспечивает передачу пользовательских данных и сигнальной информации между ОУ и БС. Его главной целью является обеспечение необходимого качества услуг, а также маршрутизация информации. Кроме того, на протокол возлагаются задачи управления ОУ и БС. Основными функциями BSSGP являются: