При этом нормировку вероятностей можно производить не
раз, как это делалось в пункте 4, а один раз, исходя из условия . Отметим также, что если в сети есть терминальные узлы, в которых условия (2.2.12), (2.2.13) не выполняются, то алгоритм существенно усложнится, так как в этих узлах нельзя применить (2.2.15) – (2.2.17). Поэтому для таких узлов необходимо добавить процедуру численного решения системы уравнений (2.2.2) – (2.2.7) с последующей его нормировкой.Замечание 2.5. Нетрудно понять, что совместное стационарное распределение чисел заявок в узлах имеет следующую форму:
где
а совместное стационарное распределение режимов работы узлов – форму:
где
Здесь
– число индексов, таких, чтокоторое, как упоминалось выше, конечно или счетно.
Исходя из этих соотношений можно построить также алгоритм подсчета числовых характеристик узлов в стационарном режиме. Например, можно найти среднее стационарное число заявок в каждом узле, средний стационарный режим работы каждого узла и т.п. В принципе можно построить алгоритм нахождения совместной стационарной производящей функции чисел заявок и режимов работы в узлах сети, алгоритмы нахождения совместной производящей функции чисел заявок и нахождения совместной производящей функции режимов работы узлов в установившемся состоянии.
Пусть
– часть выходящего из -го узла потока заявок, покидающих сеть – подмножество нетерминальных узлов . Из леммы 2.4 и результатов работы вытекаетСледствие 2.2. Потоки
являются независимыми пуассоновскими потоками с параметрами соответственно.Заметим, что если условиям (2.2.12), (2.2.13) подчиняются все узлы, то
– независимые пуассоновские потоки.В 2.2 рассматривалась достаточно общая модель открытой сети с многорежимными стратегиями. Здесь рассматривается несколько полезных для приложений частных случаев этой модели. Во всех рассматриваемых ниже примерах предполагается, что для
выполняется при и при .Случай
. Во многих практических ситуациях переход с одного режима работы на другие невозможен, когда в узле нет заявок. Поэтому пусть для всех выполняется при . Пусть также для всех выполняется для и для , а также для и для . Это соответствует тому, что в модели из 2.2 полагается .Следствие 2.3.Для того, чтобы стационарное распределение марковского процесса представлялось в мультипликативной форме (2.2.8), необходимо и достаточно, чтобы во всех нетерминальных узлах сети выполнялись условия
Множители в (2.2.8) имеют форму
где
В следующих двух случаях стационарное распределение всегда имеет форму произведения, поскольку марковский процесс, описывающий изолированный узел в фиктивной окружающей среде, обратим. Поэтому не надо накладывать никаких ограничений типа (2.2.12), (2.2.13).
Случай
. Прибор может переключаться с одного режима работы на другие только тогда, когда в узле нет заявок: для выполняется при и при . Кроме того для всех выполняется . Это соответствует тому, что в модели из 2.2 полагается .Следствие 2.4.Марковский процесс эргодичен, а его стационарное распределение представляется в мультипликативной форме (2.2.8), множители в которой имеют форму
где
Случай
. Переход с одного режима работы прибора на другие возможен только тогда, когда в -узле находится определенное число заявок : для выполняется при и при . Кроме того для всех выполняется . Это соответствует тому, что в модели из 2.2 полагается .Следствие 2.5.Марковский процесс эргодичен, а его стационарное распределение представляется в мультипликативной форме (2.2.8), множители в которой имеют форму
где