Смекни!
smekni.com

Моделирование систем массового обслуживания (стр. 3 из 7)

Пусть задана сложная дискретная система S.


Множество входных параметров
Множество внутренних параметров
Внешнее воздействие
Множество выходных параметров

Закон функционирования некоторой сложной системы в общем виде:

As – алгоритм функционирования – метод преобразования экзогенных характеристик в эндогенные (независимые в зависимые).

Система также имеет множество состояний в определенные моменты времени:

Начальное состояние:

Под математической моделью реальной системы понимается конечной множество переменных x(t), h(t), v(t) вместе с математическими связями между ними и характеристиками выходных параметров системы y(t).

Типовые математические схемы.

В практике моделирования на первоначальных этапах формализации объекта используют так называемые типовые математические схемы, к которым относятся хорошо проработанные и проверенные математические объекты.

процесс функционированиясистемы типовая математическаясхема обозначение
Непрерывно-детерминированный подход стандартные ДУ D-схема
Дискретно-детерминированный подход конечные автоматы F-схема
Дискретно-стохастический подход вероятностные автоматы P-схема
Непрерывно-стохастический подход система массового обслуживания Q-схема
Обобщенные (универсальный) агрегативная система A-схема

Сложность возрастает сверху внизу. В агрегативных схемах используется иерархический подход.

Формализация и алгоритмизация процесса функционирования системы

Сущность машинного моделирования некоторой сложной системы состоит в проведении эксперимента с моделью, которая представляет программный комплекс, описывающей формально или алгоритмически поведение элементов системы в процессе её функционирования, т.е. взаимодействия друг с другом и с внешней средой.

Основные требования, предъявляемые к модели:

1. Полнота модели – модель должна предоставлять пользователю возможность получения необходимого набора характеристик, оценок системы с требуемой точностью и достоверностью.

2. Гибкость модели – модель должна давать возможность воспроизводить различные ситуации при варьировании структуры, алгоритмов и параметров модели. Причем, структура должна быть блочной, т.е. допускать возможные замены, добавления и исключения некоторых частей без переделки всей модели.

3. Компьютерная реализация модели должна соответствовать имеющимся технически ресурсам.

Процесс моделирования, включающий разработку и компьютерную реализацию модели, является итерационным. Этот итерационный процесс продолжается до тех пор, пока не будет получена некоторая модель, которую можно считать адекватной в рамках решения поставленной задачи.

Основные этапы моделирования больших систем

1. Построение концептуальной (описательной) модели некоторой системы и её формализация

2. Алгоритмизация модели и её программная реализация

3. Получение и интерпретация результатов моделирования

На первом этапе формулируется модель и строится её формальная схема. Основное назначение данного этапа – переход от содержательного описания объекта к его математической модели. Это наиболее ответственный и наименее формализованный этап. Исходный материал данного этапа – содержательное описание объекта.

1. Проведение границ между системой и внешней средой.

2. Исследование моделируемого объекта с точки зрения выделения основных составляющих процесса функционирования системы (по отношению к целям моделирования)

3. Переход от содержательного описания системы к формализованному описанию свойств процесса функционирования системы, т.е. к концептуальной модели. Переход от содержательного описания системы к её модели в данной ситуации сводится к исключению некоторых второстепенных элементов описания. Предполагается, что они не оказывают существенного влияния на ход процессов, исследуемых в системе с помощью модели.

4. Основные элементы модели группируются в блоки. Блоки I-ой группы представляют собой имитатор воздействия внешней среды. Блоки II-ой групп являются собственно моделью функционирования. Блоки III-ей группы носят вспомогательный характер для реализации I-ой и II-ой групп и для фиксации результатов моделирования.

5. Процесс функционирования системы разбивается на подпроцессы так, чтобы построение отдельных моделей подпроцессов было элементарным и не вызывало трудностей.

На втором этапе моделирования – этапе алгоритмизации модели и её машинной реализации, сформированная на первом этапе математическая модель реализуется в виде программы. Исходный материал – блочная логическая схема.

1. Разработка схемы моделирующего алгоритма.

2. Разработка схемы программы.

3. Выбор технического средства для реализации компьютерной модели.

4. Этап программирования модели (программирование и отладка).

5. Проверка достоверности модели на различных работающих тестовых примерах.

6. Составление технической документации (логические схемы, схемы программ, спецификации)

На третьем этапе (получение и интерпретация результатов) компьютер используется для проведения рабочих расчетов по готовой программе модели. Результат этих расчетов позволяет проанализировать и сделать выводы о характеристиках процесса функционирования моделируемой системы.

1. Планирование машинного эксперимента с моделью системы (активный и пассивный эксперименты). Необходимо составление плана проведения эксперимента с указанием комбинации переменных и параметров, для которых должен проводится эксперимент. Главная задача – дать максимальный объем информации об объекте моделирования при минимальных затратах машинного времени.

2. Проведение рабочих расчетов (контрольная калибровка модели)

3. Статистическая обработка результатов расчетов.

4. Интерпретация результатов моделирования, подведение итогов

5. Составление технической документации.

Различие стратегического и тактического планирования машинных экспериментов заключается в том, что в первом случае ставится задача построения оптимального плана эксперимента для достижения цели, поставленной перед моделированием (оптимизация структуры алгоритмов и параметров системы). Во втором случае, преследуются частные цели оптимальной реализации каждого конкретного эксперимента из множества необходимых экспериментов, заданных при стратегическом планировании.

Три основных класса ошибок:

1. Ошибка формализации – недостаточно подробное описание модели

2. Ошибка решения – некорректный или слишком упрощенный метод построения модели

3. Ошибка задания параметров.

Проверка адекватности модели.

Проверка адекватности модели заключается в анализе её соразмерности, а также равнозначности системы. Адекватность нарушается из-за идеализации внешних условий и пренебрежения некоторыми случайными факторами.

Считается, что модель адекватна с системой, если вероятность того, что отклонение параметров Dy не превышает некоторой предельной величины d больше допустимой вероятности.

На практике использование данного критерия невозможно, т.к.:

1. Для проектирования или моделирования системы отсутствует информация о выходной характеристики y.

2. Как правило, система оценивается не по одной, а по множеству характеристик

3. Характеристики могут быть случайными величинами или функциями.

На практике оценка адекватности обычно проводится путем экспертного анализа разумности результатов моделирования.

Выдвигаются следующие виды проверки:

1. Проверка моделируемых элементов

2. Проверка внешних воздействий

3. Проверка концептуальной модели

4. Проверка формализованной математической модели

5. Проверка программной модели

6. Проверка способов измерения и вычисления выходных характеристик